From quantum optics to quantum technologies

被引:36
|
作者
Browne, Dan [1 ]
Bose, Sougato [1 ]
Mintert, Florian [2 ]
Kim, M. S. [2 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] Imperial Coll London, Blackett Lab, QOLS, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
NONCLASSICAL MOTIONAL STATES; MANY-BODY LOCALIZATION; COHERENT STATES; SINGLE-PHOTON; EXPERIMENTAL REALIZATION; KEY DISTRIBUTION; MOTT INSULATOR; ENTANGLEMENT; DECOHERENCE; SIMULATION;
D O I
10.1016/j.pquantelec.2017.06.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum optics is the study of the intrinsically quantum properties of light. During the second part of the 20th century experimental and theoretical progress developed together; nowadays quantum optics provides a testbed of many fundamental aspects of quantum mechanics such as coherence and quantum entanglement. Quantum optics helped trigger, both directly and indirectly, the birth of quantum technologies, whose aim is to harness non classical quantum effects in applications from quantum key distribution to quantum computing. Quantum light remains at the heart of many of the most promising and potentially transformative quantum technologies. In this review, we celebrate the work of Sir Peter Knight and present an overview of the development of quantum optics and its impact on quantum technologies research. We describe the core theoretical tools developed to express and study the quantum properties of light, the key experimental approaches used to control, manipulate and measure such properties and their application in quantum simulation, and quantum computing.
引用
收藏
页码:2 / 18
页数:17
相关论文
共 50 条
  • [1] From quantum optics to quantum communications
    Abram, I
    Grangier, P
    COMPTES RENDUS PHYSIQUE, 2003, 4 (01) : 187 - 199
  • [2] Journeys from quantum optics to quantum technology
    Barnett, Stephen M.
    Beige, Almut
    Ekert, Artur
    Garraway, Barry M.
    Keitel, Christoph H.
    Kendon, Viv
    Lein, Manfred
    Milburn, Gerard J.
    Moya-Cessa, Hector M.
    Murao, Mio
    Pachos, Jiannis K.
    Palma, G. Massimo
    Paspalakis, Emmanuel
    Phoenix, Simon J. D.
    Piraux, Benard
    Plenio, Martin B.
    Sanders, Barry C.
    Twamley, Jason
    Vidiella-Barranco, A.
    Kim, M. S.
    PROGRESS IN QUANTUM ELECTRONICS, 2017, 54 : 19 - 45
  • [3] Quantum imaging technologies
    Malik, M.
    Boyd, R. W.
    RIVISTA DEL NUOVO CIMENTO, 2014, 37 (05): : 273 - 332
  • [4] Photonic quantum technologies
    O'Brien, Jeremy L.
    Furusawa, Akira
    Vuckovic, Jelena
    NATURE PHOTONICS, 2009, 3 (12) : 687 - 695
  • [5] QUANTUM INFORMATION AND QUANTUM TECHNOLOGIES
    Ionicioiu, Radu
    ROMANIAN REPORTS IN PHYSICS, 2015, 67 (04) : 1300 - 1318
  • [6] Metasurface polarization optics: From classical to quantum
    Li, Feng-Jun
    Wang, Shuai
    Zhong, Rui
    Hu, Meng-Xia
    Jiang, Yue
    Zheng, Meijiu
    Wang, Mu
    Li, Xiangping
    Peng, Ruwen
    Deng, Zi-Lan
    APPLIED PHYSICS REVIEWS, 2024, 11 (04):
  • [7] On the genesis and evolution of Integrated Quantum Optics
    Tanzilli, Sebastien
    Martin, Anthony
    Kaiser, Florian
    De Micheli, Marc P.
    Alibart, Olivier
    Ostrowsky, Daniel B.
    LASER & PHOTONICS REVIEWS, 2012, 6 (01) : 115 - 143
  • [8] QUANTUM OPTICS Enhanced quantum light generation
    Jones, R. Jason
    NATURE PHOTONICS, 2010, 4 (03) : 138 - 140
  • [9] Hidden correlations in quantum optics and quantum information
    Man'ko, Margarita A.
    SYMMETRIES IN SCIENCE XVII, 2018, 1071
  • [10] Electron quantum optics as quantum signal processing
    Roussel, B.
    Cabart, C.
    Feve, G.
    Thibierge, E.
    Degiovanni, P.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (03):