From quantum optics to quantum technologies

被引:36
作者
Browne, Dan [1 ]
Bose, Sougato [1 ]
Mintert, Florian [2 ]
Kim, M. S. [2 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] Imperial Coll London, Blackett Lab, QOLS, London SW7 2AZ, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
NONCLASSICAL MOTIONAL STATES; MANY-BODY LOCALIZATION; COHERENT STATES; SINGLE-PHOTON; EXPERIMENTAL REALIZATION; KEY DISTRIBUTION; MOTT INSULATOR; ENTANGLEMENT; DECOHERENCE; SIMULATION;
D O I
10.1016/j.pquantelec.2017.06.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum optics is the study of the intrinsically quantum properties of light. During the second part of the 20th century experimental and theoretical progress developed together; nowadays quantum optics provides a testbed of many fundamental aspects of quantum mechanics such as coherence and quantum entanglement. Quantum optics helped trigger, both directly and indirectly, the birth of quantum technologies, whose aim is to harness non classical quantum effects in applications from quantum key distribution to quantum computing. Quantum light remains at the heart of many of the most promising and potentially transformative quantum technologies. In this review, we celebrate the work of Sir Peter Knight and present an overview of the development of quantum optics and its impact on quantum technologies research. We describe the core theoretical tools developed to express and study the quantum properties of light, the key experimental approaches used to control, manipulate and measure such properties and their application in quantum simulation, and quantum computing.
引用
收藏
页码:2 / 18
页数:17
相关论文
共 220 条
[1]   Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays [J].
Angelakis, Dimitris G. ;
Santos, Marcelo Franca ;
Bose, Sougato .
PHYSICAL REVIEW A, 2007, 76 (03)
[2]  
[Anonymous], 2013, THEORY COMPUT, DOI DOI 10.4086/toc.2013.v009a004
[3]  
[Anonymous], 2005, Introductory Quantum Optics
[4]  
[Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
[5]   Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box [J].
Armour, AD ;
Blencowe, MP ;
Schwab, KC .
PHYSICAL REVIEW LETTERS, 2002, 88 (14) :148301/1-148301/4
[6]  
Asasi J., 2013, NAT PHOTONICS, V7, P613
[7]   EXPERIMENTAL REALIZATION OF EINSTEIN-PODOLSKY-ROSEN-BOHM GEDANKENEXPERIMENT - A NEW VIOLATION OF BELL INEQUALITIES [J].
ASPECT, A ;
GRANGIER, P ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1982, 49 (02) :91-94
[8]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[9]   Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories [J].
Banerjee, D. ;
Boegli, M. ;
Dalmonte, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[10]   Digital quantum simulation of fermionic models with a superconducting circuit [J].
Barends, R. ;
Lamata, L. ;
Kelly, J. ;
Garcia-Alvarez, L. ;
Fowler, A. G. ;
Megrant, A. ;
Jeffrey, E. ;
White, T. C. ;
Sank, D. ;
Mutus, J. Y. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Hoi, I. -C. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Solano, E. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2015, 6