Covering of nonlinear maps on a cone in neighborhoods of irregular points

被引:9
作者
Arutyunov, AV [1 ]
机构
[1] Peoples Friendship Univ Russia, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
F-covering map; linearly covering map; Banach open mapping theorem; covering theorem for a cone; implicit function theorem; Robinson regularity condition;
D O I
10.1007/s11006-005-0043-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inverse function theorems for smooth nonlinear maps defined on convex cones in Banach spaces in a neighborhood of an irregular point are considered. The corresponding covering theorem is proved. The proofs are based on a Banach open mapping theorem for convex cones in Banach spaces, which is also proved in the paper. Sufficient conditions for tangency to the zero set of a nonlinear map without a priori regularity assumptions are obtained.
引用
收藏
页码:447 / 460
页数:14
相关论文
共 13 条
[1]  
Alekseev VM., 1979, Optimal Control
[2]  
[Anonymous], 1989, ELEMENTS THEORY FUNC
[3]  
[Anonymous], MAT ZAMETKI
[4]  
ARUTYUNOV A. V., 2003, DOKL ROSS AKAD NAUK, V389, P7
[5]   Implicit function theorem as a realization of the Lagrange principle. Abnormal points [J].
Arutyunov, AV .
SBORNIK MATHEMATICS, 2000, 191 (1-2) :1-24
[6]  
Aubin J.-P., 1984, Differential Inclusions
[7]  
Dmitruk AV, 1980, USP MAT NAUK, V35, P11
[8]  
Ekeland I., 1976, CONVEX ANAL VARIATIO
[9]  
Izmailov A. F., 1999, 2-Regular Solutions of Nonlinear Problems: Theory and Numerical Methods
[10]  
Izmailov A. F., 2000, MAT ZAMETKI, V67, p[57, 2000]