An L-curve for the MINRES method

被引:6
作者
Calvetti, D [1 ]
Lewis, B [1 ]
Reichel, L [1 ]
机构
[1] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
来源
ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS X | 2000年 / 4116卷
关键词
iterative method; regularization; ill-posed problem; image restoration;
D O I
10.1117/12.406517
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A variant of the MINRES method, often referred to as the MR-II method, has in the last few years become a popular iterative scheme for computing approximate solutions of large linear discrete ill-posed problems with a symmetric matrix. It is important to terminate the iterations sufficiently early in order to avoid severe amplification of measurement and round-off errors. We present a new L-curve for determining when to terminate the iterations with the MINRES and MR-II methods.
引用
收藏
页码:385 / 395
页数:11
相关论文
共 11 条
[1]  
CALVETTI D, 1994, SIAM PROC S, P267
[2]  
CALVETTI D, UNPUB GMRES L CURVES
[3]  
CALVETTI D, UNPUB CHOICE SUBSPAC
[4]  
Fischer B, 1996, Tech. rep.
[5]   Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques [J].
Hanke, M ;
Nagy, JG .
INVERSE PROBLEMS, 1996, 12 (02) :157-173
[6]  
Hanke M., 1993, Surveys on Mathematics for Industry, V3, P253
[7]  
Hanke M., 1995, Conjugate gradient type methods for ill-posed problems
[8]  
Hansen P., 1998, Rank-Deficient and Discrete Ill-Posed Problems
[9]  
Hansen P. C., 1994, Numerical Algorithms, V6, P1, DOI 10.1007/BF02149761
[10]   SOLUTION OF SPARSE INDEFINITE SYSTEMS OF LINEAR EQUATIONS [J].
PAIGE, CC ;
SAUNDERS, MA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (04) :617-629