Position artifacts in 3D reconstruction of plate-shaped precipitates in steels depending on the analysis direction of atom probe tomography

被引:2
作者
Takahashi, Jun [1 ]
Kawakami, Kazuto [2 ]
机构
[1] Nippon Steel Corp Ltd, Adv Technol Res Labs, 20-1 Sintomi, Futtsu, Chiba 2938511, Japan
[2] Nippon Steel Technol Co Ltd, Resource & Proc Solut Dev, Futtsu, Chiba, Japan
关键词
atom probe tomography; atomic density; cementite; evaporation field; position artifact; vanadium carbide; FIELD-ION MICROSCOPY; LOCAL MAGNIFICATION; GRAIN-BOUNDARY; TIP SHAPE; EVAPORATION; RESOLUTION; EVOLUTION; CEMENTITE; SOLUTE;
D O I
10.1002/sia.7001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atom probe tomography (APT) analysis often produces artifacts in atomic position owing to the difference in evaporation fields in materials. The atomic density profiles of grain boundaries, plate-shaped low-field precipitates (cementite), and high-field precipitates (vanadium carbide) in steels were investigated via two analyses in directions perpendicular and parallel to the boundaries and platelets. Although the perpendicular analysis indicated better quantitative performances in the composition analyses of segregating atoms at the grain boundary and the constituent atoms of the precipitates, an abnormal atomic density was observed around the interfaces of the precipitates. Geometric calculation using a two-radius model based on the local magnification effect suggested that a spike structure at the front interface and a dip structure at the rear interface for lamellar cementite correspond to an overlap and a gap in the evaporated atoms from the cementite and matrix, respectively. This indicates that even in the perpendicular analysis, the precipitate constituent atoms and matrix atoms mixed in the depth direction. We discuss the origin and impact of the position artifacts in the perpendicular analyses of low- and high-field plate-shaped precipitates and also discussed the application limits of the model.
引用
收藏
页码:982 / 995
页数:14
相关论文
共 38 条
[1]   Phase-field-crystal study of grain boundary premelting and shearing in bcc iron [J].
Adland, Ari ;
Karma, Alain ;
Spatschek, Robert ;
Buta, Dorel ;
Asta, Mark .
PHYSICAL REVIEW B, 2013, 87 (02)
[2]   A GENERAL PROTOCOL FOR THE RECONSTRUCTION OF 3D ATOM-PROBE DATA [J].
BAS, P ;
BOSTEL, A ;
DECONIHOUT, B ;
BLAVETTE, D .
APPLIED SURFACE SCIENCE, 1995, 87-8 (1-4) :298-304
[3]   Atomic-scale APFIM and TEM investigation of grain boundary microchemistry in astroloy nickel base superalloys [J].
Blavette, D ;
Duval, P ;
Letellier, L ;
Guttmann, M .
ACTA MATERIALIA, 1996, 44 (12) :4995-5005
[4]   Comparison of atom probe compositional fidelity across thin film interfaces [J].
Brons, J. G. ;
Herzing, A. A. ;
Henry, K. T. ;
Anderson, I. M. ;
Thompson, G. B. .
THIN SOLID FILMS, 2014, 551 :61-67
[5]  
Cerezo P, 2006, 50 INT FIELD EM S GU
[6]   ATOMIC RESOLUTION OF A FIELD ION MICROSCOPE [J].
CHEN, YC ;
SEIDMAN, DN .
SURFACE SCIENCE, 1971, 26 (01) :61-&
[7]   A New Approach to the Determination of Concentration Profiles in Atom Probe Tomography [J].
Felfer, Peter J. ;
Gault, Baptiste ;
Sha, Gang ;
Stephenson, Leigh ;
Ringer, Simon P. ;
Cairney, Julie M. .
MICROSCOPY AND MICROANALYSIS, 2012, 18 (02) :359-364
[8]   Advances in the reconstruction of atom probe tomography data [J].
Gault, B. ;
Haley, D. ;
de Geuser, F. ;
Moody, M. P. ;
Marquis, B. A. ;
Larson, D. J. ;
Geiser, B. P. .
ULTRAMICROSCOPY, 2011, 111 (06) :448-457
[9]  
Gault B., 2012, Atom Probe Microscopy, V160
[10]   Wide-Field-of-View Atom Probe Reconstruction [J].
Geiser, B. P. ;
Larson, D. J. ;
Oltman, E. ;
Gerstl, S. ;
Reinhard, D. ;
Kelly, T. F. ;
Prosa, T. J. .
MICROSCOPY AND MICROANALYSIS, 2009, 15 :292-293