Complemented zero-divisor graphs and Boolean rings

被引:46
作者
LaGrange, John D. [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
zero-divisor graph; Boolean ring; complete ring of quotients;
D O I
10.1016/j.jalgebra.2006.12.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a commutative ring R, the zero-divisor graph of R is the graph whose vertices are the nonzero zero-divisors of R such that the vertices x and); are adjacent if and only if xy = 0. In this paper, we classify the zero-divisor graphs of Boolean rings, as well as those of Boolean rings that are rationall complete. We also provide a complete list of those rings whose zero-divisor graphs have the property that every vertex is either an end or adjacent to an end. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:600 / 611
页数:12
相关论文
共 14 条
[1]   On the diameter and girth of a zero-divisor graph [J].
Anderson, David F. ;
Mulay, S. B. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) :543-550
[2]   Zero-divisor graphs, von Neumann regular rings, and Boolean algebras [J].
Anderson, DF ;
Levy, R ;
Shapiro, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 180 (03) :221-241
[3]  
Anderson DF, 2001, LECT NOTES PURE APPL, V220, P61
[4]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[5]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[6]  
DeMeyer F., 2002, INT J COMMUTATIVE RI, V1, P93
[7]  
Fine N. T., 1965, RINGS QUOTIENTS RING
[8]  
Huckaba JA., 1988, COMMUTATIVE RINGS ZE
[9]  
Kaplansky I., 1974, COMMUTATIVE RINGS
[10]  
Lambek J., 1966, LECT RINGS MODULES