A gap theorem for ancient solutions to the Ricci flow

被引:0
作者
Yokota, Takumi [1 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan
来源
PROBABILISTIC APPROACH TO GEOMETRY | 2010年 / 57卷
关键词
Ricci flow; reduced volume; asymptotic volume ratio; gradient Ricci soliton; COMPLETE MANIFOLDS; CURVATURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We outline the proof of the gap theorem stating that any ancient solution to the Ricci flow with Perelman's reduced volume whose asymptotic limit is sufficiently close to that of the Gaussian soliton must be isometric to the Euclidean space for all time. This is the main result of the author's paper [Yo].
引用
收藏
页码:505 / 514
页数:10
相关论文
共 17 条
[1]   ON THE TOPOLOGY OF COMPLETE MANIFOLDS OF NONNEGATIVE RICCI CURVATURE [J].
ANDERSON, MT .
TOPOLOGY, 1990, 29 (01) :41-55
[2]   CONVERGENCE AND RIGIDITY OF MANIFOLDS UNDER RICCI CURVATURE BOUNDS [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1990, 102 (02) :429-445
[3]  
Carrillo J, ARXIV08062417
[4]  
CHEN CBL, ARXIV07063081
[5]  
Chow B., 2007, The Ricci flow: techniques and applications, V135
[6]  
Chow B., 2006, GRAD STUD MATH, V77
[7]   A COMPACTNESS PROPERTY FOR SOLUTIONS OF THE RICCI FLOW [J].
HAMILTON, RS .
AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (03) :545-572
[9]  
LOTT LJ, CALC VAR PA IN PRESS
[10]  
MCCANN R, AM J MATH IN PRESS