Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method

被引:90
作者
Babolian, E
Goghary, HS [1 ]
Abbasbandy, S
机构
[1] Azad Univ, Dept Math, Kerman Branch, Kerman, Iran
[2] Teacher Training Univ, Dept Math, Tehran, Iran
[3] Azad Univ, Dept Math, Tehran, Iran
[4] Imam Khomeini Int Univ, Dept Math, Qazvin, Iran
关键词
fuzzy integral equations; system of linear Fredholm integral equations of the second kind; adomian method;
D O I
10.1016/j.amc.2003.12.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using parametric form of fuzzy numbers we convert a linear fuzzy Fredholm integral equation of the second kind to a linear system of integral equations of the second kind in crisp case. We use Adomian method and find the approximate solution of this system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equation of the second kind. We apply the method to some examples. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:733 / 744
页数:12
相关论文
共 32 条
[11]   Numerical methods for calculating the fuzzy integral [J].
Friedman, M ;
Ming, M ;
Kandel, A .
FUZZY SETS AND SYSTEMS, 1996, 83 (01) :57-62
[12]   Numerical solutions of fuzzy differential and integral equations [J].
Friedman, M ;
Ma, M ;
Kandel, A .
FUZZY SETS AND SYSTEMS, 1999, 106 (01) :35-48
[13]   EIGEN FUZZY NUMBER SETS [J].
GOETSCHEL, R ;
VOXMAN, W .
FUZZY SETS AND SYSTEMS, 1985, 16 (01) :75-85
[14]   ELEMENTARY FUZZY CALCULUS [J].
GOETSCHEL, R ;
VOXMAN, W .
FUZZY SETS AND SYSTEMS, 1986, 18 (01) :31-43
[15]  
Hochstadt H., 1973, INTEGRAL EQUATIONS, DOI DOI 10.1002/9781118165942
[16]   FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :301-317
[17]  
KANDEL A, 1978, IEEE T SYST MAN CYB, V8, P396
[18]   SOME NOTES ON THE CHARACTERIZATION OF COMPACT-SETS IN (E(N), D(P)) [J].
MING, M .
FUZZY SETS AND SYSTEMS, 1993, 56 (03) :297-301
[19]  
Mizumoto M., 1976, SYSTEMS COMPUT CONTR, V7, P73
[20]  
Nahmias S., 1978, Fuzzy Sets and Systems, V1, P97, DOI 10.1016/0165-0114(78)90011-8