Homoclinic orbits to invariant sets of quasi-integrable exact maps

被引:19
作者
Bernard, P
机构
[1] Univ Cergy Pontoise, F-75775 Paris 16, France
[2] Univ Paris 09, CEREMADE, F-75775 Paris, France
关键词
D O I
10.1017/S0143385700000870
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The resonant tori of an integrable system are destroyed by a perturbation. If the Hamiltonian is convex, they give rise to hyperbolic lower-dimensional invariant tori or to Aubry-Mather invariant sets. Bolotin has proved the existence of homoclinic orbits to the hyperbolic tori but not to the Aubry-Mather invariant sets. We solve this problem and obtain, for each resonant frequency, the existence of an invariant set with homoclinic orbits.
引用
收藏
页码:1583 / 1601
页数:19
相关论文
共 11 条
[1]  
[Anonymous], 1995, OXFORD MATH MONOGRAP
[2]  
Arnold VI, 1964, SOV MATH DOKL, V5, P581
[3]   BIRKHOFF PERIODIC-ORBITS FOR SMALL PERTURBATIONS OF COMPLETELY INTEGRABLE HAMILTONIAN-SYSTEMS WITH CONVEX HAMILTONIANS [J].
BERNSTEIN, D ;
KATOK, A .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :225-241
[4]  
BOLOTIN SV, 1995, AM MATH SOC TRANSL, V168, P21
[5]  
ELIASSON LH, 1994, BOL SOC BRAS MAT, V25, P56
[6]   Heteroclinic orbits and Peierls set [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (10) :1213-1216
[7]   CANONICAL PERTURBATION-THEORY VIA SIMULTANEOUS APPROXIMATION [J].
LOCHAK, P .
RUSSIAN MATHEMATICAL SURVEYS, 1992, 47 (06) :57-133
[8]  
LOCHAK P, 1996, NATO SCI SERIES C, V533
[9]   VARIATIONAL CONSTRUCTION OF CONNECTING ORBITS [J].
MATHER, JN .
ANNALES DE L INSTITUT FOURIER, 1993, 43 (05) :1349-1386
[10]   ACTION MINIMIZING INVARIANT-MEASURES FOR POSITIVE DEFINITE LAGRANGIAN SYSTEMS [J].
MATHER, JN .
MATHEMATISCHE ZEITSCHRIFT, 1991, 207 (02) :169-207