Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians

被引:60
作者
Frix, Anne-Noelle [1 ]
Cousin, Francois [2 ]
Refaee, Turkey [3 ,4 ]
Bottari, Fabio [5 ]
Vaidyanathan, Akshayaa [3 ,5 ]
Desir, Colin [6 ]
Vos, Wim [5 ]
Walsh, Sean [5 ]
Occhipinti, Mariaelena [5 ]
Lovinfosse, Pierre [2 ]
Leijenaar, Ralph T. H. [5 ]
Hustinx, Roland [2 ]
Meunier, Paul [6 ]
Louis, Renaud [1 ]
Lambin, Philippe [3 ]
Guiot, Julien [1 ]
机构
[1] Univ Hosp Liege, Dept Resp Med, B-4000 Liege, Belgium
[2] Univ Hosp Liege, Dept Nucl Med & Oncol Imaging, B-4000 Liege, Belgium
[3] Maastricht Univ, GROW Sch Oncol, Dept Precis Med, D Lab, NL-6229 Maastricht, Netherlands
[4] Jazan Univ, Fac Appl Sci, Dept Diagnost Radiol, Jazan 45142, Saudi Arabia
[5] Radiomics, Res & Dev, B-4000 Liege, Belgium
[6] Univ Hosp Liege, Dept Radiol, B-4000 Liege, Belgium
关键词
radiomics; artificial intelligence; lung diseases; precision medicine; IDIOPATHIC PULMONARY-FIBROSIS; OBJECTIVE QUANTIFICATION; AUTOMATED QUANTIFICATION; MACROSCOPIC MORPHOMETRY; VOLUME REDUCTION; GROWTH-RATE; CT; NODULES; EMPHYSEMA; FEATURES;
D O I
10.3390/jpm11070602
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Artificial intelligence (AI) has increasingly been serving the field of radiology over the last 50 years. As modern medicine is evolving towards precision medicine, offering personalized patient care and treatment, the requirement for robust imaging biomarkers has gradually increased. Radiomics, a specific method generating high-throughput extraction of a tremendous amount of quantitative imaging data using data-characterization algorithms, has shown great potential in individuating imaging biomarkers. Radiomic analysis can be implemented through the following two methods: hand-crafted radiomic features extraction or deep learning algorithm. Its application in lung diseases can be used in clinical decision support systems, regarding its ability to develop descriptive and predictive models in many respiratory pathologies. The aim of this article is to review the recent literature on the topic, and briefly summarize the interest of radiomics in chest Computed Tomography (CT) and its pertinence in the field of pulmonary diseases, from a clinician's perspective.
引用
收藏
页数:20
相关论文
共 93 条
[21]   Short-term Automated Quantification of Radiologic Changes in the Characterization of Idiopathic Pulmonary Fibrosis Versus Nonspecific Interstitial Pneumonia and Prediction of Long-term Survival [J].
De Giacomi, Federica ;
Raghunath, Sushravya ;
Karwoski, Ronald ;
Bartholmai, Brian J. ;
Moua, Teng .
JOURNAL OF THORACIC IMAGING, 2018, 33 (02) :124-131
[22]   Computed tomographic imaging of the airways:: relationship to structure and function [J].
de Jong, PA ;
Müller, NL ;
Paré, PD ;
Coxson, HO .
EUROPEAN RESPIRATORY JOURNAL, 2005, 26 (01) :140-152
[23]   This Week in the Journal [J].
de Koning, H. J. ;
van der Aalst, C. M. ;
de Jong, P. A. ;
Scholten, E. T. ;
Nackaerts, K. ;
Heuvelmans, M. A. ;
Lammers, J. -W. J. ;
Weenink, C. ;
Yousaf-Khan, U. ;
Horeweg, N. ;
van't Westeinde, S. ;
Prokop, M. ;
Mali, W. P. ;
Hoesein, F. A. A. Mohamed ;
van Ooijen, P. M. A. ;
Aerts, J. G. J. V. ;
den Bakker, M. A. ;
Thunnissen, E. ;
Verschakelen, J. ;
Vliegenthart, R. ;
Walter, J. E. ;
ten Haaf, K. ;
Groen, H. J. M. ;
Oudkerk, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (06) :503-513
[24]   Predicting malignant potential of subsolid nodules: can radiomics preempt longitudinal follow up CT? [J].
Digumarthy, Subba R. ;
Padole, Atul M. ;
Rastogi, Shivam ;
Price, Melissa ;
Mooradian, Meghan J. ;
Sequist, Lecia V. ;
Kalra, Mannudeep K. .
CANCER IMAGING, 2019, 19 (1)
[25]  
European Commission. Joint Research Centre, ROB EXPL ART INT TEC, DOI [10.2760/57493, DOI 10.2760/57493]
[26]   Radiomics-based features for pattern recognition of lung cancer histopathology and metastases [J].
Ferreira Junior, Jose Raniery ;
Koenigkam-Santos, Marcel ;
Garcia Cipriano, Federico Enrique ;
Fabro, Alexandre Todorovic ;
de Azevedo-Marques, Paulo Mazzoncini .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 159 :23-30
[27]   Convolutional neural network-based PSO for lung nodule false positive reduction on CT images [J].
Franca da Silva, Giovanni Lucca ;
Azevedo Valente, Thales Levi ;
Silva, Aristofanes Correa ;
de Paiva, Anselmo Cardoso ;
Gattass, Marcelo .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 162 :109-118
[28]   COMPARISON OF COMPUTED DENSITY AND MACROSCOPIC MORPHOMETRY IN PULMONARY-EMPHYSEMA [J].
GEVENOIS, PA ;
DEMAERTELAER, V ;
DEVUYST, P ;
ZANEN, J ;
YERNAULT, JC .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1995, 152 (02) :653-657
[29]   Automated Texture-based Quantification of Centrilobular Nodularity and Centrilobular Emphysema in Chest CT Images [J].
Ginsburg, Shoshana B. ;
Lynch, David A. ;
Bowler, Russell P. ;
Schroeder, Joyce D. .
ACADEMIC RADIOLOGY, 2012, 19 (10) :1241-1251
[30]   Quantitative computed tomography-derived clusters: Redefining airway remodeling in asthmatic patients [J].
Gupta, Sumit ;
Hartley, Ruth ;
Khan, Umair T. ;
Singapuri, Amisha ;
Hargadon, Beverly ;
Monteiro, William ;
Pavord, Ian D. ;
Sousa, Ana R. ;
Marshall, Richard P. ;
Subramanian, Deepak ;
Parr, David ;
Entwisle, James J. ;
Siddiqui, Salman ;
Raj, Vimal ;
Brightling, Christopher E. .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2014, 133 (03) :729-+