Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians

被引:60
作者
Frix, Anne-Noelle [1 ]
Cousin, Francois [2 ]
Refaee, Turkey [3 ,4 ]
Bottari, Fabio [5 ]
Vaidyanathan, Akshayaa [3 ,5 ]
Desir, Colin [6 ]
Vos, Wim [5 ]
Walsh, Sean [5 ]
Occhipinti, Mariaelena [5 ]
Lovinfosse, Pierre [2 ]
Leijenaar, Ralph T. H. [5 ]
Hustinx, Roland [2 ]
Meunier, Paul [6 ]
Louis, Renaud [1 ]
Lambin, Philippe [3 ]
Guiot, Julien [1 ]
机构
[1] Univ Hosp Liege, Dept Resp Med, B-4000 Liege, Belgium
[2] Univ Hosp Liege, Dept Nucl Med & Oncol Imaging, B-4000 Liege, Belgium
[3] Maastricht Univ, GROW Sch Oncol, Dept Precis Med, D Lab, NL-6229 Maastricht, Netherlands
[4] Jazan Univ, Fac Appl Sci, Dept Diagnost Radiol, Jazan 45142, Saudi Arabia
[5] Radiomics, Res & Dev, B-4000 Liege, Belgium
[6] Univ Hosp Liege, Dept Radiol, B-4000 Liege, Belgium
关键词
radiomics; artificial intelligence; lung diseases; precision medicine; IDIOPATHIC PULMONARY-FIBROSIS; OBJECTIVE QUANTIFICATION; AUTOMATED QUANTIFICATION; MACROSCOPIC MORPHOMETRY; VOLUME REDUCTION; GROWTH-RATE; CT; NODULES; EMPHYSEMA; FEATURES;
D O I
10.3390/jpm11070602
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Artificial intelligence (AI) has increasingly been serving the field of radiology over the last 50 years. As modern medicine is evolving towards precision medicine, offering personalized patient care and treatment, the requirement for robust imaging biomarkers has gradually increased. Radiomics, a specific method generating high-throughput extraction of a tremendous amount of quantitative imaging data using data-characterization algorithms, has shown great potential in individuating imaging biomarkers. Radiomic analysis can be implemented through the following two methods: hand-crafted radiomic features extraction or deep learning algorithm. Its application in lung diseases can be used in clinical decision support systems, regarding its ability to develop descriptive and predictive models in many respiratory pathologies. The aim of this article is to review the recent literature on the topic, and briefly summarize the interest of radiomics in chest Computed Tomography (CT) and its pertinence in the field of pulmonary diseases, from a clinician's perspective.
引用
收藏
页数:20
相关论文
共 93 条
[11]  
Bera Kaustav, 2018, Am Soc Clin Oncol Educ Book, V38, P1008, DOI 10.1200/EDBK_199747
[12]   Idiopathic pulmonary fibrosis: Physiologic tests, quantitative CT indexes, and CT visual scores as predictors of mortality [J].
Best, Alan C. ;
Meng, Jiangfeng ;
Lynch, Anne M. ;
Bozic, Carmen M. ;
Miller, David ;
Grunwald, Gary K. ;
Lynch, David A. .
RADIOLOGY, 2008, 246 (03) :935-940
[13]   Perfusion Scintigraphy and Patient Selection for Lung Volume Reduction Surgery [J].
Chandra, Divay ;
Lipson, David A. ;
Hoffman, Eric A. ;
Hansen-Flaschen, John ;
Sciurba, Frank C. ;
DeCamp, Malcolm M. ;
Reilly, John J. ;
Washko, George R. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2010, 182 (07) :937-946
[14]   Radiomic features analysis in computed tomography images of lung nodule classification [J].
Chen, Chia-Hung ;
Chang, Chih-Kun ;
Tu, Chih-Yen ;
Liao, Wei-Chih ;
Wu, Bing-Ru ;
Chou, Kuei-Ting ;
Chiou, Yu-Rou ;
Yang, Shih-Neng ;
Zhang, Geoffrey ;
Huang, Tzung-Chi .
PLOS ONE, 2018, 13 (02)
[15]   Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives [J].
Chetan, Madhurima R. ;
Gleeson, Fergus V. .
EUROPEAN RADIOLOGY, 2021, 31 (02) :1049-1058
[16]   Radiomics approach for survival prediction in chronic obstructive pulmonary disease [J].
Cho, Young Hoon ;
Seo, Joon Beom ;
Lee, Sang Min ;
Kim, Namkug ;
Yun, Jihye ;
Hwang, Jeong Eun ;
Lee, Jae Seung ;
Oh, Yeon-Mok ;
Do Lee, Sang ;
Loh, Li-Cher ;
Ong, Choo-Khoom .
EUROPEAN RADIOLOGY, 2021, 31 (10) :7316-7324
[17]   Quantitative assessment of pulmonary vascular alterations in chronic obstructive lung disease: Associations with pulmonary function test and survival in the KOLD cohort [J].
Cho, Young Hoon ;
Lee, Sang Min ;
Seo, Joon Beom ;
Kim, Namkug ;
Bae, Jang Pyo ;
Lee, Jae Seung ;
Oh, Yeon-Mok ;
Do-Lee, Sang .
EUROPEAN JOURNAL OF RADIOLOGY, 2018, 108 :276-282
[18]   Quantitative computed tomographic imaging-based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes [J].
Choi, Sanghun ;
Hoffman, Eric A. ;
Wenzel, Sally E. ;
Castro, Mario ;
Fain, Sean ;
Jarjour, Nizar ;
Schiebler, Mark L. ;
Chen, Kun ;
Lin, Ching-Long .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2017, 140 (03) :690-+
[19]   Radiomic phenotype features predict pathological response in non-small cell lung cancer [J].
Coroller, Thibaud P. ;
Agrawal, Vishesh ;
Narayan, Vivek ;
Hou, Ying ;
Grossmann, Patrick ;
Lee, Stephanie W. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2016, 119 (03) :480-486
[20]   CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma [J].
Coroller, Thibaud P. ;
Grossmann, Patrick ;
Hou, Ying ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Hermann, Gretchen ;
Lambin, Philippe ;
Haibe-Kains, Benjamin ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2015, 114 (03) :345-350