Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians

被引:60
作者
Frix, Anne-Noelle [1 ]
Cousin, Francois [2 ]
Refaee, Turkey [3 ,4 ]
Bottari, Fabio [5 ]
Vaidyanathan, Akshayaa [3 ,5 ]
Desir, Colin [6 ]
Vos, Wim [5 ]
Walsh, Sean [5 ]
Occhipinti, Mariaelena [5 ]
Lovinfosse, Pierre [2 ]
Leijenaar, Ralph T. H. [5 ]
Hustinx, Roland [2 ]
Meunier, Paul [6 ]
Louis, Renaud [1 ]
Lambin, Philippe [3 ]
Guiot, Julien [1 ]
机构
[1] Univ Hosp Liege, Dept Resp Med, B-4000 Liege, Belgium
[2] Univ Hosp Liege, Dept Nucl Med & Oncol Imaging, B-4000 Liege, Belgium
[3] Maastricht Univ, GROW Sch Oncol, Dept Precis Med, D Lab, NL-6229 Maastricht, Netherlands
[4] Jazan Univ, Fac Appl Sci, Dept Diagnost Radiol, Jazan 45142, Saudi Arabia
[5] Radiomics, Res & Dev, B-4000 Liege, Belgium
[6] Univ Hosp Liege, Dept Radiol, B-4000 Liege, Belgium
关键词
radiomics; artificial intelligence; lung diseases; precision medicine; IDIOPATHIC PULMONARY-FIBROSIS; OBJECTIVE QUANTIFICATION; AUTOMATED QUANTIFICATION; MACROSCOPIC MORPHOMETRY; VOLUME REDUCTION; GROWTH-RATE; CT; NODULES; EMPHYSEMA; FEATURES;
D O I
10.3390/jpm11070602
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Artificial intelligence (AI) has increasingly been serving the field of radiology over the last 50 years. As modern medicine is evolving towards precision medicine, offering personalized patient care and treatment, the requirement for robust imaging biomarkers has gradually increased. Radiomics, a specific method generating high-throughput extraction of a tremendous amount of quantitative imaging data using data-characterization algorithms, has shown great potential in individuating imaging biomarkers. Radiomic analysis can be implemented through the following two methods: hand-crafted radiomic features extraction or deep learning algorithm. Its application in lung diseases can be used in clinical decision support systems, regarding its ability to develop descriptive and predictive models in many respiratory pathologies. The aim of this article is to review the recent literature on the topic, and briefly summarize the interest of radiomics in chest Computed Tomography (CT) and its pertinence in the field of pulmonary diseases, from a clinician's perspective.
引用
收藏
页数:20
相关论文
共 93 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]  
[Anonymous], 2019, J THORAC ONCOL OFF P, V14, P1732
[4]  
[Anonymous], LUNG CT SCREEN REP D
[5]   Artificial intelligence and radiomics in pulmonary nodule management: current status and future applications [J].
Ather, S. ;
Kadir, T. ;
Gleeson, F. .
CLINICAL RADIOLOGY, 2020, 75 (01) :13-19
[6]   Radiomics in the evaluation of lung nodules: Intrapatient concordance between full-dose and ultra-low-dose chest computed tomography [J].
Autrusseau, Pierre-Alexis ;
Labani, Aissam ;
De Marini, Pierre ;
Leyendecker, Pierre ;
Hintzpeter, Cedric ;
Ortlieb, Anne-Claire ;
Calhoun, Michael ;
Goldberg, Ilya ;
Roy, Catherine ;
Ohana, Mickael .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2021, 102 (04) :233-239
[7]   A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI [J].
Avendi, M. R. ;
Kheradvar, Arash ;
Jafarkhani, Hamid .
MEDICAL IMAGE ANALYSIS, 2016, 30 :108-119
[8]   Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach [J].
Avendi, Michael R. ;
Kheradvar, Arash ;
Jafarkhani, Hamid .
MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (06) :2439-2448
[9]   Reproducibility and Prognosis of Quantitative Features Extracted from CT Images [J].
Balagurunathan, Yoganand ;
Gu, Yuhua ;
Wang, Hua ;
Kumar, Virendra ;
Grove, Olya ;
Hawkins, Sam ;
Kim, Jongphil ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Gatenby, Robert A. ;
Gillies, Robert J. .
TRANSLATIONAL ONCOLOGY, 2014, 7 (01) :72-87
[10]   Pulmonary emphysema: Subjective visual grading versus objective quantification with macroscopic morphometry and thin-section CT densitometry [J].
Bankier, AA ;
De Maertelaer, V ;
Keyzer, C ;
Gevenois, PA .
RADIOLOGY, 1999, 211 (03) :851-858