ON THE EXISTENCE OF POSITIVE DEFINITE SOLUTIONS OF A NONLINEAR MATRIX EQUATION

被引:3
作者
Li, Jing [1 ]
Zhang, Yuhai [2 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2014年 / 18卷 / 05期
关键词
Nonlinear matrix equation; Positive definite solution; Iteration; Perturbation estimate; Backward error; Condition number; Fixed point theorem; PERTURBATION ANALYSIS;
D O I
10.11650/tjm.18.2014.3747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the nonlinear matrix equation X - Sigma(m)(i=1) A(i)* X-pi A(i) = Q with p(i) > 0 is investigated. Necessary and sufficient conditions for the existence of Hermitian positive definite solutions are obtained. An effective iterative method to obtain the unique solution is established. A perturbation bound and the backward error of an approximate solution to this solution is evaluated. Moreover, an explicit expression of the condition number for the positive definite solution is given. The theoretical results are illustrated by numerical examples.
引用
收藏
页码:1345 / 1364
页数:20
相关论文
共 19 条
  • [1] Anderson W. N. Jr., 1988, Linear Circuits, Systems and Signal Processing: Theory and Application, P3
  • [2] CONSISTENT ESTIMATES OF PARAMETERS OF A LINEAR SYSTEM
    ANDERSON, WN
    KLEINDOR.GB
    KLEINDOR.PR
    WOODROOF.MB
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (06): : 2064 - &
  • [3] [Anonymous], 1997, MATH APPL
  • [4] Buey R.S., 1972, PROC 6 BERKELEY S MA, V3, P645
  • [5] DIRECT METHODS FOR SOLVING POISSONS EQUATIONS
    BUZBEE, BL
    GOLUB, GH
    NIELSON, CW
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) : 627 - &
  • [6] Duan X. F., 2012, Q J APPL MATH INFORM, V30, P655
  • [7] On the nonlinear matrix equation X-Σi=1m,Ai*Xδi Ai = Q
    Duan, Xuefeng
    Liao, Anping
    Tang, Bin
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (01) : 110 - 121
  • [8] On Hermitian positive definite solution of the matrix equation X - Σi=1mAi*XrAi = Q
    Duan, Xuefeng
    Liao, Anping
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) : 27 - 36
  • [9] Horn R., 2005, MATRIX ANAL
  • [10] HORN RA, 2005, TOPICS MATRIX ANAL