A Three-Gene Model to Robustly Identify Breast Cancer Molecular Subtypes

被引:241
作者
Haibe-Kains, Benjamin [1 ,3 ]
Desmedt, Christine [4 ]
Loi, Sherene [4 ]
Culhane, Aedin C. [1 ,3 ]
Bontempi, Gianluca [5 ]
Quackenbush, John [1 ,2 ,3 ]
Sotiriou, Christos [4 ]
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[4] Univ Libre Bruxelles, Breast Canc Translat Res Lab JC Heuson, Dept Med Oncol, Inst Jules Bordet, Brussels, Belgium
[5] Univ Libre Bruxelles, Machine Learning Grp, Dept Comp Sci, Brussels, Belgium
来源
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE | 2012年 / 104卷 / 04期
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
GENE-EXPRESSION SIGNATURE; CLASSIFICATION; VALIDATION; SURVIVAL; METASTASIS; PROGNOSIS; CHEMOTHERAPY; PREDICTORS; CARCINOMAS; THERAPY;
D O I
10.1093/jnci/djr545
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Single sample predictors (SSPs) and Subtype classification models (SCMs) are gene expression-based classifiers used to identify the four primary molecular subtypes of breast cancer (basal-like, HER2-enriched, luminal A, and luminal B). SSPs use hierarchical clustering, followed by nearest centroid classification, based on large sets of tumor-intrinsic genes. SCMs use a mixture of Gaussian distributions based on sets of genes with expression specifically correlated with three key breast cancer genes (estrogen receptor [ER], HER2, and aurora kinase A [AURKA]). The aim of this study was to compare the robustness, classification concordance, and prognostic value of these classifiers with those of a simplified three-gene SCM in a large compendium of microarray datasets. Methods Thirty-six publicly available breast cancer datasets (n = 5715) were subjected to molecular subtyping using five published classifiers (three SSPs and two SCMs) and SCMGENE, the new three-gene (ER, HER2, and AURKA) SCM. We used the prediction strength statistic to estimate robustness of the classification models, defined as the capacity of a classifier to assign the same tumors to the same subtypes independently of the dataset used to fit it. We used Cohen kappa and Cramer V coefficients to assess concordance between the subtype classifiers and association with clinical variables, respectively. We used Kaplan-Meier survival curves and cross-validated partial likelihood to compare prognostic value of the resulting classifications. All statistical tests were two-sided. Results SCMs were statistically significantly more robust than SSPs, with SCMGENE being the most robust because of its simplicity. SCMGENE was statistically significantly concordant with published SCMs (kappa = 0.65-0.70) and SSPs (kappa = 0.34-0.59), statistically significantly associated with ER (V = 0.64), HER2 (V = 0.52) status, and histological grade (V = 0.55), and yielded similar strong prognostic value. Conclusion Our results suggest that adequate classification of the major and clinically relevant molecular subtypes of breast cancer can be robustly achieved with quantitative measurements of three key genes.
引用
收藏
页码:311 / 325
页数:15
相关论文
共 75 条
[1]   IDconverter and IDClight:: Conversion and annotation of gene and protein IDs [J].
Alibes, Andreu ;
Yankilevich, Patricio ;
Canada, Andres ;
Diaz-Uriarte, Ramon .
BMC BIOINFORMATICS, 2007, 8
[2]   Molecular classification of breast cancer: implications for selection of adjuvant chemotherapy [J].
Andre, Fabrice ;
Pusztai, Lajos .
NATURE CLINICAL PRACTICE ONCOLOGY, 2006, 3 (11) :621-632
[3]  
[Anonymous], EXPRESSION PROJECT O
[4]   Oncogenic pathway signatures in human cancers as a guide to targeted therapies [J].
Bild, AH ;
Yao, G ;
Chang, JT ;
Wang, QL ;
Potti, A ;
Chasse, D ;
Joshi, MB ;
Harpole, D ;
Lancaster, JM ;
Berchuck, A ;
Olson, JA ;
Marks, JR ;
Dressman, HK ;
West, M ;
Nevins, JR .
NATURE, 2006, 439 (7074) :353-357
[6]   Genes that mediate breast cancer metastasis to the brain [J].
Bos, Paula D. ;
Zhang, Xiang H. -F. ;
Nadal, Cristina ;
Shu, Weiping ;
Gomis, Roger R. ;
Nguyen, Don X. ;
Minn, Andy J. ;
van de Vijver, Marc J. ;
Gerald, William L. ;
Foekens, John A. ;
Massague, Joan .
NATURE, 2009, 459 (7249) :1005-U137
[7]   Effects of infiltrating lymphocytes and estrogen receptor on gene expression and prognosis in breast cancer [J].
Calabro, Alberto ;
Beissbarth, Tim ;
Kuner, Ruprecht ;
Stojanov, Michael ;
Benner, Axel ;
Asslaber, Martin ;
Ploner, Ferdinand ;
Zatloukal, Kurt ;
Samonigg, Hellmut ;
Poustka, Annemarie ;
Sueltmann, Holger .
BREAST CANCER RESEARCH AND TREATMENT, 2009, 116 (01) :69-77
[8]   Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients [J].
Calza, Stefano ;
Hall, Per ;
Auer, Gert ;
Bjohle, Judith ;
Klaar, Sigrid ;
Kronenwett, Ulrike ;
T Liu, Edison ;
Miller, Lance ;
Ploner, Alexander ;
Smeds, Johanna ;
Bergh, Jonas ;
Pawitan, Yudi .
BREAST CANCER RESEARCH, 2006, 8 (04)
[9]   Prediction of metastatic relapse in node-positive breast cancer:: establishment of a clinicogenomic model after FEC100 adjuvant regimen [J].
Campone, Mario ;
Campion, Loic ;
Roche, Henry ;
Gouraud, Wilfried ;
Charbonnel, Catherine ;
Magrangeas, Florence ;
Minvielle, Stephane ;
Geneve, Jean ;
Martin, Anne-Laure ;
Bataille, Regis ;
Jezequel, Pascal .
BREAST CANCER RESEARCH AND TREATMENT, 2008, 109 (03) :491-501
[10]   The MINDACT trial: The first prospective clinical validation of a genomic tool [J].
Cardoso, Fatima ;
Piccart-Gebhart, Martine ;
Van't Veer, Laura ;
Rutgers, Emiel .
MOLECULAR ONCOLOGY, 2007, 1 (03) :246-251