Homoclinic orbits of first order discrete Hamiltonian systems with super linear terms
被引:7
作者:
Chen WenXiong
论文数: 0引用数: 0
h-index: 0
机构:
Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R ChinaHuaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
Chen WenXiong
[1
]
Yang MinBo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R ChinaHuaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
Yang MinBo
[2
,3
]
Ding YanHeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R ChinaHuaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
Ding YanHeng
[2
]
机构:
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
homoclinic orbits;
first order discrete Hamiltonian systems;
super linear;
critical points;
MULTIPLE PERIODIC-SOLUTIONS;
DIFFERENCE-EQUATIONS;
DISCONJUGACY;
EXISTENCE;
SYMMETRY;
D O I:
10.1007/s11425-011-4276-8
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we consider the first order discrete Hamiltonian systems {x(1)(n + 1) - x(1)(n) = - H(x2) (n, x(n)), x(2)(n) - x(2)(n - 1) = H(x1) (n, x(n)), where x(n) = ((x1(n))(x2(n)) is an element of R(2N), H(n, z) = 1/2 S(n) z . z + R(n, z) is periodic in n and superlinear as |z| -> infinity. We prove the existence and infinitely many (geometrically distinct) homoclonic orbits of the system by critical point theorems for strongly indefinite functionals.
机构:
Hunan Business Coll, Dept Informat, Changsha 410205, Hunan, Peoples R ChinaHunan Business Coll, Dept Informat, Changsha 410205, Hunan, Peoples R China
Deng, Xiaoqing
;
Cheng, Gong
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Geosci & Environm Engn, Changsha 410083, Peoples R ChinaHunan Business Coll, Dept Informat, Changsha 410205, Hunan, Peoples R China
机构:
Hunan Univ, Coll Math & Economet, Changsha 410082, Peoples R China
Hunan Business Coll, Dept Informat, Changsha 410205, Peoples R ChinaHunan Univ, Coll Math & Economet, Changsha 410082, Peoples R China
机构:
Hunan Business Coll, Dept Informat, Changsha 410205, Hunan, Peoples R ChinaHunan Business Coll, Dept Informat, Changsha 410205, Hunan, Peoples R China
Deng, Xiaoqing
;
Cheng, Gong
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Geosci & Environm Engn, Changsha 410083, Peoples R ChinaHunan Business Coll, Dept Informat, Changsha 410205, Hunan, Peoples R China
机构:
Hunan Univ, Coll Math & Economet, Changsha 410082, Peoples R China
Hunan Business Coll, Dept Informat, Changsha 410205, Peoples R ChinaHunan Univ, Coll Math & Economet, Changsha 410082, Peoples R China