Homoclinic orbits of first order discrete Hamiltonian systems with super linear terms

被引:7
作者
Chen WenXiong [1 ]
Yang MinBo [2 ,3 ]
Ding YanHeng [2 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100080, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
homoclinic orbits; first order discrete Hamiltonian systems; super linear; critical points; MULTIPLE PERIODIC-SOLUTIONS; DIFFERENCE-EQUATIONS; DISCONJUGACY; EXISTENCE; SYMMETRY;
D O I
10.1007/s11425-011-4276-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the first order discrete Hamiltonian systems {x(1)(n + 1) - x(1)(n) = - H(x2) (n, x(n)), x(2)(n) - x(2)(n - 1) = H(x1) (n, x(n)), where x(n) = ((x1(n))(x2(n)) is an element of R(2N), H(n, z) = 1/2 S(n) z . z + R(n, z) is periodic in n and superlinear as |z| -> infinity. We prove the existence and infinitely many (geometrically distinct) homoclonic orbits of the system by critical point theorems for strongly indefinite functionals.
引用
收藏
页码:2583 / 2596
页数:14
相关论文
共 23 条
[1]   EQUIVALENCE OF DISCRETE EULER EQUATIONS AND DISCRETE HAMILTONIAN-SYSTEMS [J].
AHLBRANDT, CD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 180 (02) :498-517
[2]   Homoclinic solutions of Hamiltonian systems with symmetry [J].
Arioli, G ;
Szulkin, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 158 (02) :291-313
[3]   Homoclinic solutions of an infinite-dimensional Hamiltonian system [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :289-310
[4]   Deformation theorems on non-metrizable vector spaces and applications to critical point theory [J].
Bartsch, Thomas ;
Ding, Yanheng .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (12) :1267-1288
[5]   Linear Hamiltonian difference systems: Disconjugacy and Jacobi-type conditions [J].
Bohner, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (03) :804-826
[6]   DISCONJUGACY, DISFOCALITY, AND OSCILLATION OF 2ND-ORDER DIFFERENCE-EQUATIONS [J].
CHEN, SZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (02) :383-394
[7]  
COTIZELATI V, 1990, MATH ANN, V288, P133
[8]   Homoclinic orbits for second order discrete Hamiltonian systems with potential changing sign [J].
Deng, Xiaoqing ;
Cheng, Gong .
ACTA APPLICANDAE MATHEMATICAE, 2008, 103 (03) :301-314
[9]   Periodic solutions for subquadratic discrete Hamiltonian systems [J].
Deng, Xiaoqing .
ADVANCES IN DIFFERENCE EQUATIONS, 2007, 2007 (1)
[10]   Homoclinic orbits for a nonperiodic Hamiltonian system [J].
Ding, Yanheng ;
Jeanjean, Louis .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (02) :473-490