Use of Generative Disease Models for Analysis and Selection of Radiomic Features in PET

被引:10
作者
Klyuzhin, Ivan S. [1 ]
Fu, Jessie F. [2 ]
Shenkov, Nikolay [2 ]
Rahmim, Arman [3 ]
Sossi, Vesna [2 ]
机构
[1] Univ British Columbia, Dept Med, Div Neurol, Vancouver, BC V6T 1Z1, Canada
[2] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[3] Johns Hopkins Univ, Dept Radiol, Baltimore, MD 21205 USA
基金
加拿大健康研究院;
关键词
Feature selection; machine learning; Parkinson's disease (PD); positron emission tomography (PET); radiomics; PARKINSONS-DISEASE; TUMOR-GROWTH; TEXTURAL FEATURES; HETEROGENEITY; PREDICTION; IMAGES; PROGRESSION; IMPACT;
D O I
10.1109/TRPMS.2018.2844171
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiomic positron emission tomography (PET) image features are increasingly used in conjunction with machine learning to predict clinical disease measures. However, a thorough understanding of these image features remains challenging due to their relatively high complexity, hampering a-priori selection of optimal features and model parameters for a predictive task. In this paper, we explore the use of a generative disease model (GDM) for feature analysis. The GDM generates a series of synthetic PET images that simulate progressive disease-induced changes in radiotracer binding. These images can be used to obtain the expected values of image features, estimate the effect of various parameters on the feature correlation with clinical measures, and to select optimal features prior to testing them on real data. As an illustrative example, we apply the GDM-based approach to brain PET imaging of Parkinson's disease subjects. Following initial validation, we use the GDM to understand the trends of change in the measured feature values with disease progression. Interestingly, the GDM revealed many features to change nonmonotonically, even with monotonic changes in radiotracer binding. An important implication of this finding is that different features may be optimal as biomarkers at different disease stages.
引用
收藏
页码:178 / 191
页数:14
相关论文
共 46 条
[1]   Beyond imaging: The promise of radiomics [J].
Avanzo, Michele ;
Stancanello, Joseph ;
El Naqa, Issam .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 38 :122-139
[2]   Revisiting the Robustness of PET-Based Textural Features in the Context of Multi-Centric Trials [J].
Bailly, Clement ;
Bodet-Milin, Caroline ;
Couespel, Solene ;
Necib, Hatem ;
Kraeber-Bodere, Franoise ;
Ansquer, Catherine ;
Carlier, Thomas .
PLOS ONE, 2016, 11 (07)
[3]   From patient-specific mathematical neuro-oncology to precision medicine [J].
Baldock, A. L. ;
Rockne, R. C. ;
Boone, A. D. ;
Neal, M. L. ;
Hawkins-Daarud, A. ;
Corwin, D. M. ;
Bridge, C. A. ;
Guyman, L. A. ;
Trister, A. D. ;
Mrugala, M. M. ;
Rockhill, J. K. ;
Swanson, K. R. .
FRONTIERS IN ONCOLOGY, 2013, 3
[4]   Neuroimaging in pre-motor Parkinson's disease [J].
Barber, Thomas R. ;
Klein, Johannes C. ;
Mackay, Clare E. ;
Hu, Michele T. M. .
NEUROIMAGE-CLINICAL, 2017, 15 :215-227
[5]   Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth [J].
Benzekry, Sebastien ;
Lamont, Clare ;
Beheshti, Afshin ;
Tracz, Amanda ;
Ebos, John M. L. ;
Hlatky, Lynn ;
Hahnfeldt, Philip .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (08)
[6]  
Blinder Stephan A. L., 2014, 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), P1, DOI 10.1109/NSSMIC.2014.7430910
[7]   Towards the Design of a Patient-Specific Virtual Tumour [J].
Caraguel, Flavien ;
Lesart, Anne-Cecile ;
Esteve, Francois ;
van der Sanden, Boudewijn ;
Stephanou, Angelique .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2016, 2016
[8]   False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review [J].
Chalkidou, Anastasia ;
O'Doherty, Michael J. ;
Marsden, Paul K. .
PLOS ONE, 2015, 10 (05)
[9]   An analysis of co-occurrence texture statistics as a function of grey level quantization [J].
Clausi, DA .
CANADIAN JOURNAL OF REMOTE SENSING, 2002, 28 (01) :45-62
[10]  
Comtat C, 2004, IEEE NUCL SCI CONF R, P3492