Logarithmic differential forms on p-adic symmetric spaces

被引:15
作者
Iovita, A
Spiess, M
机构
[1] Univ Washington, Dept Math, Seattle, WA 98105 USA
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
关键词
D O I
10.1215/S0012-7094-01-11023-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an explicit description in terms of logarithmic differential forms of the isomorphism of P Schneider and U. Stuhler relating de Rham cohomology of p-adic symmetric spaces to boundary distributions. As an application we prove a Hodge-type decomposition for the de Rham cohomology of varieties over p-adic fields which admit a uniformization by a p-adic symmetric space.
引用
收藏
页码:253 / 278
页数:26
相关论文
共 14 条
[1]  
[Anonymous], GRAD TEXTS MATH
[2]  
[Anonymous], LECT NOTES MATH
[3]   Residues on buildings and de Rham cohomology of p-adic symmetric domains [J].
De Shalit, E .
DUKE MATHEMATICAL JOURNAL, 2001, 106 (01) :123-191
[4]  
GROSSEKLOENNE E, 1998, RHAMKOHOMOLOGIE RIGI
[5]  
HARTSHORNE R, 1975, PUBL MATH IHES, V45, P5
[6]  
Iversen B., 1986, COHOMOLOGY SHEAVES
[7]  
Kiehl R., 1967, INVENT MATH, V2, P191, DOI [/10.1007/BF01425513, DOI 10.1007/BF01425513]
[8]  
Kiehl R., 1967, INVENT MATH, V2, P256, DOI DOI 10.1007/BF01425404
[9]   NON-ARCHIMEDEAN UNIFORMIZATION [J].
MUSTAFIN, GA .
MATHEMATICS OF THE USSR-SBORNIK, 1978, 34 (02) :187-214
[10]   THE COHOMOLOGY OF P-ADIC SYMMETRICAL SPACES [J].
SCHNEIDER, P ;
STUHLER, U .
INVENTIONES MATHEMATICAE, 1991, 105 (01) :47-122