Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations

被引:91
作者
Yan, Xiliang [1 ,2 ]
Sedykh, Alexander [2 ,3 ]
Wang, Wenyi [2 ]
Yan, Bing [1 ,4 ]
Zhu, Hao [2 ,5 ]
机构
[1] Guangzhou Univ, Inst Environm Res Greater Bay, Key Lab Water Qual & Conservat Pearl River Delta, Minist Educ, Guangzhou 510006, Peoples R China
[2] Rutgers Ctr Computat & Integrat Biol, Camden, NJ 08102 USA
[3] Sciome, Res Triangle Pk, NC 27709 USA
[4] Shandong Univ, Sch Environm Sci & Engn, Jinan 250100, Peoples R China
[5] Rutgers State Univ, Dept Chem, Camden, NJ 08102 USA
基金
中国国家自然科学基金;
关键词
NANOPARTICLES; QSAR; GENE; PREDICTION; DENDRIMERS; TOXICITY;
D O I
10.1038/s41467-020-16413-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modern nanotechnology research has generated numerous experimental data for various nanomaterials. However, the few nanomaterial databases available are not suitable for modeling studies due to the way they are curated. Here, we report the construction of a large nanomaterial database containing annotated nanostructures suited for modeling research. The database, which is publicly available through http://www.pubvinas.com/, contains 705 unique nanomaterials covering 11 material types. Each nanomaterial has up to six physicochemical properties and/or bioactivities, resulting in more than ten endpoints in the database. All the nanostructures are annotated and transformed into protein data bank files, which are downloadable by researchers worldwide. Furthermore, the nanostructure annotation procedure generates 2142 nanodescriptors for all nanomaterials for machine learning purposes, which are also available through the portal. This database provides a public resource for data-driven nanoinformatics modeling research aimed at rational nanomaterial design and other areas of modern computational nanotechnology. The low curation of existing nanomaterials's databases is limiting their application in modeling studies. Here the authors report a publicly available nanomaterial database that contains annotated nanostructures of diverse nanomaterials immediately available for modeling research studies.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Cryo-EM structure of a 3D DNA-origami object [J].
Bai, Xiao-chen ;
Martin, Thomas G. ;
Scheres, Sjors H. W. ;
Dietz, Hendrik .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (49) :20012-20017
[2]   Gold Nanomaterials in Consumer Cosmetics Nanoproducts: Analyses, Characterization, and Dermal Safety Assessment [J].
Cao, Mingjing ;
Li, Jiayang ;
Tang, Jinglong ;
Chen, Chunying ;
Zhao, Yuliang .
SMALL, 2016, 12 (39) :5488-5496
[3]   QSAR Modeling: Where Have You Been? Where Are You Going To? [J].
Cherkasov, Artem ;
Muratov, Eugene N. ;
Fourches, Denis ;
Varnek, Alexandre ;
Baskin, Igor I. ;
Cronin, Mark ;
Dearden, John ;
Gramatica, Paola ;
Martin, Yvonne C. ;
Todeschini, Roberto ;
Consonni, Viviana ;
Kuz'min, Victor E. ;
Cramer, Richard ;
Benigni, Romualdo ;
Yang, Chihae ;
Rathman, James ;
Terfloth, Lothar ;
Gasteiger, Johann ;
Richard, Ann ;
Tropsha, Alexander .
JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (12) :4977-5010
[4]   Quasi-QSAR for predicting the cell viability of human lung and skin cells exposed to different metal oxide nanomaterials [J].
Choi, Jang-Sik ;
Trinh, Tung X. ;
Yoon, Tae-Hyun ;
Kim, Jongwoon ;
Byun, Hyung-Gi .
CHEMOSPHERE, 2019, 217 :243-249
[5]  
Dang S., 2017, Nat. Rev. Mater, V17075, P1
[6]   Hybrid nanoparticle architecture for cellular uptake and bioimaging: direct crystallization of a polymer immobilized with magnetic nanoparticles on carbon nanotubes [J].
Depan, D. ;
Misra, R. D. K. .
NANOSCALE, 2012, 4 (20) :6325-6335
[7]   Toxicity of Metal Oxide Nanoparticles: Mechanisms, Characterization, and Avoiding Experimental Artefacts [J].
Djurisic, Aleksandra B. ;
Leung, Yu Hang ;
Ng, Alan M. C. ;
Xu, Xiao Ying ;
Lee, Patrick K. H. ;
Degger, Natalie ;
Wu, R. S. S. .
SMALL, 2015, 11 (01) :26-44
[8]  
Dong Y., 2018, Angew Chemie, V130, P2094, DOI [DOI 10.1002/ANGE.201710147, 10.1002/ange.201710147]
[9]   Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs [J].
Eriksson, L ;
Jaworska, J ;
Worth, AP ;
Cronin, MTD ;
McDowell, RM ;
Gramatica, P .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2003, 111 (10) :1361-1375
[10]   Gene Expression Data Based Deep Learning Model for Accurate Prediction of Drug-Induced Liver Injury in Advance [J].
Feng, Chunlai ;
Chen, Hengwei ;
Yuan, Xianqin ;
Sun, Mengqiu ;
Chu, Kexin ;
Liu, Hanqin ;
Rui, Mengjie .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (07) :3240-3250