Surface Electromyography Characteristics for Motion Intention Recognition and Implementation Issues in Lower-limb Exoskeletons

被引:26
|
作者
Kyeong, Seulki [1 ]
Feng, Jirou [1 ]
Ryu, Jae Kwan [2 ]
Park, Jung Jae [2 ]
Lee, Kyeong Ha [2 ]
Kim, Jung [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, Daejeon 34141, South Korea
[2] LIG Nex 1, 333 Pangyo Ro, Seongnam Si, Gyeonggi Do, South Korea
关键词
Disturbance force; exoskeleton; surface electromyography (sEMG); walking environment; EMG; ORTHOSES; STRATEGY; FATIGUE;
D O I
10.1007/s12555-020-0934-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recognizing the user's motion intentions is a crucial challenge to develop human augmented robotic devices due to safety and easiness of interactions. Among the possible sensorial modalities, surface electromyography (sEMG) signals have been tested to be a primary motion intention channel due to the inherent advantage of electromechanical delay and the muscle activation information. However, the lack of detailed sEMG characteristics as motion recognition has been difficult issues to develop safe and intuitive interactions with the robots. In this study, we evaluated the sEMG characteristics for their potential applicability to recognizing the motion intentions of humans. For the discrete motion intention recognition, the walking environments were classified using only sEMG signals by support vector machine (SVM) and linear discriminated analysis (LDA) models with accuracy of 79.1% and 76.3%. Due to the fact that it is crucial to identify an unexpected disturbance by the collision between the exoskeleton and surrounding environment in recognizing the user intention to guarantee the safety of the user, sEMG and torque sensors were used to classify user-intended interaction forces and disturbance forces in the event of collisions. A control algorithm was proposed that detects and compensates for collisions, and its performance showed that robust motion intention recognition and control of powered exoskeletons are possible. We investigated the effect of muscle fatigue caused by long-term walking with heavy load wearing an exoskeleton. The sEMG amplitude and frequency were analyzed for muscle fatigue due to single-joint (knee extensions) and multi-joint (walking) exercises, and muscle fatigue due to walking was prominent in the signal from the vastus medialis (VM). The characteristics of sEMG due to muscle fatigue should be seriously considered in continuous motion estimation.
引用
收藏
页码:1018 / 1028
页数:11
相关论文
共 50 条
  • [1] Surface Electromyography Characteristics for Motion Intention Recognition and Implementation Issues in Lower-limb Exoskeletons
    Seulki Kyeong
    Jirou Feng
    Jae Kwan Ryu
    Jung Jae Park
    Kyeong Ha Lee
    Jung Kim
    International Journal of Control, Automation and Systems, 2022, 20 : 1018 - 1028
  • [2] Intention Recognition for Lower-Limb Exoskeleton
    Chen Q.-M.
    Huang R.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2018, 47 (03): : 330 - 336
  • [3] Gait parameter adaptation for lower-limb exoskeletons
    Sanz-Merodio, D.
    Cestari, M.
    Arevalo, J. C.
    Garcia, E.
    PROCEEDINGS IWBBIO 2013: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, 2013, : 667 - 675
  • [4] Mechatronic Exoskeletons for Lower-Limb Rehabilitation: An Innovative Review
    Huamanchahua, Deyby
    Taza-Aquino, Yerson
    Figueroa-Bados, Jhon
    Alanya-Villanueva, Jason
    Vargas-Martinez, Adriana
    Ramirez-Mendoza, Ricardo A.
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 926 - 933
  • [5] Biomechanical models in the lower-limb exoskeletons development: a review
    Firouzi, Vahid
    Seyfarth, Andre
    Song, Seungmoon
    von Stryk, Oskar
    Sharbafi, Maziar Ahmad
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2025, 22 (01)
  • [6] Preliminary Design of an Environment Recognition System for Controlling Robotic Lower-Limb Prostheses and Exoskeletons
    Laschowski, Brock
    McNally, William
    Wong, Alexander
    McPhee, John
    2019 IEEE 16TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2019, : 868 - 873
  • [7] Embodiment for Robotic Lower-Limb Exoskeletons: A Narrative Review
    Hybart, Rachel L.
    Ferris, Daniel P.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 657 - 668
  • [8] Embodiment for Robotic Lower-Limb Exoskeletons: A Narrative Review
    Hybart, Rachel L. L.
    Ferris, Daniel P. P.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 657 - 668
  • [9] Review of assistive strategies in powered lower-limb orthoses and exoskeletons
    Yan, Tingfang
    Cempini, Marco
    Oddo, Calogero Maria
    Vitiello, Nicola
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2015, 64 : 120 - 136
  • [10] Review of control strategies for lower-limb exoskeletons to assist gait
    Baud, Romain
    Manzoori, Ali Reza
    Ijspeert, Auke
    Bouri, Mohamed
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2021, 18 (01)