Projective-injective modules, Serre functors and symmetric algebras

被引:46
作者
Mazorchuk, Volodymyr [1 ]
Stroppel, Catharina [2 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2008年 / 616卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1515/CRELLE.2008.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe Serre functors for (generalisations of) the category O associated with a semisimple complex Lie algebra. In our approach, projective-injective modules, that is modules which are both, projective and injective, play an important role. They control the Serre functor in the case of a quasi-hereditary algebra having a double centraliser with respect to a projective-injective module whose endomorphism ring is a symmetric algebra. As an application of the double centraliser property together with our description of Serre functors, we prove three conjectures of Khovanov about the projective-injective modules in the parabolic category O-0(mu)(SIn).
引用
收藏
页码:131 / 165
页数:35
相关论文
共 61 条
[1]   Finitistic dimension of standardly stratified algebras [J].
Agoston, I ;
Happel, D ;
Lukács, E ;
Unger, L .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (06) :2745-2752
[2]  
Andersen H. H., 2003, Represent. Theory, V7, P681
[3]  
Andersen HH, 2003, PROG MATH, V210, P1
[4]  
Arkhipov SM, 1997, INT MATH RES NOTICES, V1997, P833
[5]   APPLICATIONS OF CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1991, 86 (01) :111-152
[6]  
AUSLANDER M, 1974, COMMUN ALGEBRA, V1, P177
[7]   TILTING EXERCISES [J].
Beilinson, A. ;
Bezrukavnikov, R. ;
Mirkovic, I. .
MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (03) :547-557
[8]   Koszul duality patterns in representation theory [J].
Beilinson, A ;
Ginzburg, V ;
Soergel, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :473-527
[9]  
Bernstein J., 1999, Selecta Math. (N.S.), V5, P199
[10]  
BERNSTEIN JN, 1980, COMPOS MATH, V41, P245