A computational fluid dynamics model using the volume of fluid method for describing the dynamics of spreading of Newtonian fluids

被引:8
|
作者
Alla, Hocine [2 ]
Freifer, Somia [2 ]
Roques-Carmes, Thibault [1 ]
机构
[1] Nancy Univ, CNRS, UPR 3349, Lab React & Genie Proc, F-54001 Nancy, France
[2] Univ Sci & Technol Oran USTO MB, Fac Sci, Dept Phys, Oran 31000, Algeria
关键词
Spreading; Dynamics; Surfactant; Simulation; CFD; Volume of fluid; MOVING CONTACT LINE; SURFACE-TENSION; SOLID-SURFACE; DROP IMPACT; SIMULATIONS; FLOW; LIQUIDS; DRIVEN; SCALES; FLAT;
D O I
10.1016/j.colsurfa.2011.07.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A numerical study is performed to describe the dynamics of drop spreading of glycerol-water mixtures with and without surfactant on hydrophilic glass surfaces. A computational fluid dynamics model (CFD), based on the volume of fluid technique (VOF), with piecewise linear interface calculations method (PLIC) for interface reconstruction, is applied to simulate the time evolution of spreading drops on solid surfaces (drop base radius and contact angle). Surface tension and wall adhesion phenomenon are included in the computational model. Numerical simulations with two-dimensional domains are sufficient to reproduce the key qualitative features observed in the experiments. The CFD simulations are quantitatively compared with previously published experimental results. The influence of different factors, such as viscosity, drop volume and non-ionic alkyl (8-16) glucoside (Plantacare 2000) surfactant concentration on the temporal evolution of the drop base radius is systematically investigated. More than 25 simulations have been performed in order to obtain detailed quantitative comparison and clear trends. We have shown, using several independent experiments, that the calculated results compare very well with experimental data for a large range of viscosity (0.02-1.15 Pa s), drop volume (8-60 mu L) and in the presence of surfactant. The accuracy of the model demonstrates that the influence of the physical-chemical properties of the liquid such as viscosity, volume and surface tension can be successfully simulated. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 50 条
  • [41] Assessing abdominal aorta narrowing using computational fluid dynamics
    Al-Rawi, Mohammad
    Al-Jumaily, Ahmed M.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2016, 54 (05) : 843 - 853
  • [42] Using computational fluid dynamics to model sail interaction-the 'slot effect' revisited
    Paton, Jon
    Morvan, Herve
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2009, 97 (11-12) : 540 - 547
  • [43] COMPUTATIONAL FLUID DYNAMICS SIMULATION OF THE SUPERSONIC STEAM EJECTOR USING DIFFERENT CONDENSATION MODEL
    Cai, Lin
    He, Miao
    Huang, Ke-Zhen
    Xiong, Wei
    THERMAL SCIENCE, 2019, 23 (03): : 1655 - 1661
  • [44] Optimization of novel photobioreactor design using computational fluid dynamics
    Soman, Abhinav
    Shastri, Yogendra
    APPLIED ENERGY, 2015, 140 : 246 - 255
  • [45] Prediction of duct fitting losses using computational fluid dynamics
    Manning, Andy
    Wilson, John
    Hanlon, Nate
    Mikjaniec, Travis
    HVAC&R RESEARCH, 2013, 19 (04): : 400 - 411
  • [46] SCALE-UP STUDY OF SPOUTED BEDS USING COMPUTATIONAL FLUID DYNAMICS
    Bettega, Rodrigo
    Guimaraes-Correa, Ronaldo
    Freire, Jose Teixeira
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2009, 87 (02): : 193 - 203
  • [47] A Parametric Study of Wind Pressure Distribution on Facades Using Computational Fluid Dynamics
    McGuill, Christopher
    Keenahan, Jennifer
    APPLIED SCIENCES-BASEL, 2020, 10 (23): : 1 - 27
  • [48] Modelling reacting localized air pollution using Computational Fluid Dynamics (CFD)
    Karim, A. A.
    Nolan, P. F.
    ATMOSPHERIC ENVIRONMENT, 2011, 45 (04) : 889 - 895
  • [49] Simulation of Palm Oil Expression in Screw Press using Computational Fluid Dynamics
    Azizi, Mohd C. Y.
    Azian, Noor M.
    Harun, M. Y.
    Ismail, M. H. S.
    Harun, M. Y.
    Azizi, Mohd C. Y.
    Azian, Noor M.
    Harun, M. Y.
    2015 10TH ASIAN CONTROL CONFERENCE (ASCC), 2015,
  • [50] Validation of computational non-Newtonian fluid model for membrane bioreactor
    Sorensen, Lasse
    Bentzen, Thomas Ruby
    Skov, Kristian
    WATER SCIENCE AND TECHNOLOGY, 2015, 72 (10) : 1810 - 1816