Plasma boosted N, P, O co-doped carbon microspheres for high performance Zn ion hybrid supercapacitors

被引:91
作者
Wang, Kangyao [1 ]
Chen, Yao [1 ]
Liu, Yuebin [1 ]
Zhang, Heng [1 ]
Shen, Yuxi [1 ]
Pu, Ziyan [1 ]
Qiu, Hailong [1 ]
Li, Yueming [1 ]
机构
[1] Yanshan Univ, Coll Mat Sci & Engn, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
关键词
Zinc-ion hybrid supercapacitors; Plasma treatment; Carbon microspheres; Doping; POROUS CARBON; ENERGY-STORAGE; ELECTROCHEMICAL PERFORMANCE; ULTRAHIGH-CAPACITANCE; ELECTRODE MATERIALS; ACTIVATED CARBON; SURFACE; HOLLOW; OXIDE; ELECTROCATALYST;
D O I
10.1016/j.jallcom.2021.163588
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zn-ion hybrid supercapacitors combine the advantages of high energy density of batteries, high power density, and excellent cycling stability of supercapacitors. In this report, plasma treated carbon microspheres with N, P, O co-doping are prepared and used as cathode material for Zn ion hybrid supercapacitors. The combination of plasma treating and heteroatom doping plays a critical role in tailoring the electro-chemical performance of the prepared carbon microspheres in Zn ion hybrid supercapacitors. A capacitance of 215.2 F g(-1) is achieved for the as-prepared carbon microspheres at 0.1 A g(-1), and the supercapacitor fabricated using the carbon microsphere display a high energy density of 54.4 Wh kg(-1) with a power density 4000 W kg(-1) and an excellent retention rate of similar to 100% after 10,000 cycles at 5 A g(-1). This work is inspiring for the manufacturing and developing new high-performance carbon materials for Zn-ion hybrid super-capacitor (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 77 条
[1]   Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries [J].
Alcántara, R ;
Lavela, P ;
Ortiz, GF ;
Tirado, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (04) :A222-A225
[2]   Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
CHEMICAL REVIEWS, 2014, 114 (23) :11619-11635
[3]   Modification of β-cyclodextrin-carbon nanotube-thermally reduced graphite oxide by using ambient plasma for electrochemical sensing of ascorbic acid [J].
Aryal, Krishna Prasad ;
Jeong, Hae Kyung .
CHEMICAL PHYSICS LETTERS, 2019, 730 :306-311
[4]   Structural Evolution of Phosphorus Species on Graphene with a Stabilized Electrochemical Interface [J].
Bi, Zhihong ;
Huo, Li ;
Kong, Qingqiang ;
Li, Feng ;
Chen, Jingpeng ;
Ahmad, Aziz ;
Wei, Xianxian ;
Xie, Lijing ;
Chen, Cheng-Meng .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (12) :11421-11430
[5]   A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors [J].
Chang, Chengshuai ;
Li, Miao ;
Wang, He ;
Wang, Shulan ;
Liu, Xuan ;
Liu, Huakun ;
Li, Li .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (34) :19939-19949
[6]   Plasma Treatment of Carbon Nanotubes Applied to Improve the High Performance of Carbon Nanofiber Supercapacitors [J].
Chang, Wei-Min ;
Wang, Cheng-Chien ;
Chen, Chuh-Yung .
ELECTROCHIMICA ACTA, 2015, 186 :530-541
[7]   A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres [J].
Chen, Shengmei ;
Ma, Longtao ;
Zhang, Kui ;
Kamruzzaman, M. ;
Zhi, Chunyi ;
Zapien, Juan Antonio .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (13) :7784-7790
[8]   3D Self-Supported Nanoarchitectured Arrays Electrodes for Lithium-Ion Batteries [J].
Chen, Xin ;
Du, Ying ;
Zhang, Nai Qing ;
Sun, Ke Ning .
JOURNAL OF NANOMATERIALS, 2012, 2012
[9]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[10]   Asymmetric Supercapacitor Electrodes and Devices [J].
Choudhary, Nitin ;
Li, Chao ;
Moore, Julian ;
Nagaiah, Narasimha ;
Zhai, Lei ;
Jung, Yeonwoong ;
Thomas, Jayan .
ADVANCED MATERIALS, 2017, 29 (21)