Symmetric Nonnegative Matrix Factorization: Algorithms and Applications to Probabilistic Clustering

被引:178
作者
He, Zhaoshui [1 ,2 ]
Xie, Shengli [1 ]
Zdunek, Rafal [3 ]
Zhou, Guoxu [1 ,2 ]
Cichocki, Andrzej [4 ]
机构
[1] Guangdong Univ Technol, Fac Automat, Guangzhou 510641, Guangdong, Peoples R China
[2] RIKEN, Brain Sci Inst, Lab Adv Brain Signal Proc, Wako, Saitama 3510198, Japan
[3] Wroclaw Univ Technol, Inst Telecommun Teleinformat & Acoust, PL-50370 Wroclaw, Poland
[4] Polish Acad Sci, Syst Res Inst, PL-00901 Warsaw, Poland
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2011年 / 22卷 / 12期
基金
中国国家自然科学基金;
关键词
Basic linear algebra subprograms; completely positive; coordinate update; multiplicative update; nonnegative matrix factorization; parallel update; probabilistic clustering; symmetric nonnegative matrix factorization; MULTIPLICATIVE UPDATE ALGORITHMS; SEPARATION; SET;
D O I
10.1109/TNN.2011.2172457
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: alpha-SNMF and beta-SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.
引用
收藏
页码:2117 / 2131
页数:15
相关论文
共 45 条
[1]   Stability Analysis of Multiplicative Update Algorithms and Application to Nonnegative Matrix Factorization [J].
Badeau, Roland ;
Bertin, Nancy ;
Vincent, Emmanuel .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (12) :1869-1881
[2]  
Bauer Eric., 1997, Proceedings of the 13th Conference on Uncertainty in Artifical Intelligence, P3
[3]   COMPLETE-POSITIVITY [J].
BERMAN, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 107 :57-63
[4]  
Berman A., 2003, Completely positive matrices
[5]   An updated set of Basic Linear Algebra Subprograms (BLAS) [J].
Blackford, LS ;
Demmel, J ;
Dongarra, J ;
Duff, I ;
Hammarling, S ;
Henry, G ;
Heroux, M ;
Kaufman, L ;
Lumsdaine, A ;
Petitet, A ;
Pozo, R ;
Remington, K ;
Whaley, RC .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2002, 28 (02) :135-151
[6]   Nonnegative matrix factorization in polynomial feature space [J].
Buciu, Ioan ;
Nikolaidis, Nikos ;
Pitas, Ioannis .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (06) :1090-1100
[7]   Document clustering using locality preserving indexing [J].
Cai, D ;
He, XF ;
Han, JW .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (12) :1624-1637
[8]   Non-Negative Matrix Factorization for Semisupervised Heterogeneous Data Coclustering [J].
Chen, Yanhua ;
Wang, Lijun ;
Dong, Ming .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2010, 22 (10) :1459-1474
[9]   Non-negative matrix factorization for semi-supervised data clustering [J].
Chen, Yanhua ;
Rege, Manjeet ;
Dong, Ming ;
Hua, Jing .
KNOWLEDGE AND INFORMATION SYSTEMS, 2008, 17 (03) :355-379
[10]  
Cichocki A., 2009, NONNEGATIVE MATRIX T