High concentrator photovoltaic module simulation by neuronal networks using spectrally corrected direct normal irradiance and cell temperature

被引:21
作者
Almonacid, F. [1 ]
Fernandez, E. F. [1 ,2 ]
Mallick, T. K. [2 ]
Perez-Higueras, P. J. [1 ]
机构
[1] Univ Jaen, Ctr Adv Studies Energy & Environm, Jaen 23071, Spain
[2] Univ Exeter, Environm & Sustainabil Inst, Penryn TR10 9EZ, Cornwall, England
基金
英国工程与自然科学研究理事会;
关键词
HCPV (high concentrator photovoltaic) modelling; Neural networks; I-V curve; Atmospheric parameters; Outdoor characterization; LIFE-CYCLE ASSESSMENT; MAXIMUM POWER; HCPV MODULE; SOLAR-CELLS; MODEL; SYSTEM; PERFORMANCE; ENERGY; PREDICTION;
D O I
10.1016/j.energy.2015.02.105
中图分类号
O414.1 [热力学];
学科分类号
摘要
The electrical modelling of HCPV (high concentrator photovoltaic) modules is a key issue for systems design and energy prediction. However, the electrical modelling of HCPV modules shows a significantly level of complexity than conventional photovoltaic technology because of the use of multi-junction solar cells and optical devices. In this paper, a method for the simulation of the I-V curves of a HCPV module at any operating condition is introduced. The method is based on three different ANN (artificial neural networks)-based models: one to spectrally correct the direct normal irradiance, one to predict the cell temperature and one to generate the I-V curve of the HCPV module. The method has the advantage that is fully based on atmospheric parameter and outdoor measurements. The analysis of results shows that the method accurately predicts the I-V curve of a HCPV module for a wide range of atmospheric operating conditions with a RMSE (root mean square error) ranging from 0.19% to 1.66% and a MBE "(mean bias error) ranging from -0.38% to 0.40%. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:336 / 343
页数:8
相关论文
共 58 条
  • [1] Estimating the maximum power of a High Concentrator Photovoltaic (HCPV) module using an Artificial Neural Network
    Almonacid, F.
    Fernandez, Eduardo F.
    Rodrigo, P.
    Perez-Higueras, P. J.
    Rus-Casas, C.
    [J]. ENERGY, 2013, 53 : 165 - 172
  • [2] Relation between the cell temperature of a HCPV module and atmospheric parameters
    Almonacid, F.
    Perez-Higueras, P. J.
    Fernandez, Eduardo F.
    Rodrigo, P.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 105 : 322 - 327
  • [3] Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks
    Almonacid, F.
    Rus, C.
    Perez-Higueras, P.
    Hontoria, L.
    [J]. ENERGY, 2011, 36 (01) : 375 - 384
  • [4] Estimation of the energy of a PV generator using artificial neural network
    Almonacid, F.
    Rus, C.
    Perez, P. J.
    Hontoria, L.
    [J]. RENEWABLE ENERGY, 2009, 34 (12) : 2743 - 2750
  • [5] Characterisation of Si-crystalline PV modules by artificial neural networks
    Almonacid, F.
    Rus, C.
    Hontoria, L.
    Fuentes, M.
    Nofuentes, G.
    [J]. RENEWABLE ENERGY, 2009, 34 (04) : 941 - 949
  • [6] [Anonymous], 2004, SAND20043535
  • [7] [Anonymous], 2003, American Standard for Testing and Materials, P1, DOI DOI 10.1520/G0077-05R10.2
  • [8] [Anonymous], 2009, E2527 ASTM
  • [9] Power Rating Of CPV Systems Based On Spectrally Corrected DNI
    Anton, I.
    Martinez, M.
    Rubio, F.
    Nunez, R.
    Herrero, R.
    Dominguez, C.
    Victoria, M.
    Askins, S.
    Sala, G.
    [J]. 8TH INTERNATIONAL CONFERENCE ON CONCENTRATING PHOTOVOLTAIC SYSTEMS (CPV-8), 2012, 1477 : 331 - 335
  • [10] Chan N, 2013, PROG PHOTOVOLTAICS, V21, P1589