Border-collision bifurcations in one-dimensional discontinuous maps

被引:96
作者
Jain, P [1 ]
Banerjee, S
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Indian Inst Technol, Dept Elect Engn, Kharagpur 721302, W Bengal, India
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2003年 / 13卷 / 11期
关键词
border-collision bifurcations; discontinuous maps; power electronics;
D O I
10.1142/S0218127403008533
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a classification of border-collision bifurcations in one-dimensional discontinuous maps depending on the parameters of the piecewise linear approximation in the neighborhood of the point of discontinuity. For each range of parameter values we derive the condition of existence and stability of various periodic orbits and of chaos. This knowledge will help in understanding the bifurcation phenomena in a large number of practical systems which can be modeled by discontinuous maps in discrete domain.
引用
收藏
页码:3341 / 3351
页数:11
相关论文
共 16 条
[1]   Bifurcations in two-dimensional piecewise smooth maps - Theory and applications in switching circuits [J].
Banerjee, S ;
Ranjan, P ;
Grebogi, C .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2000, 47 (05) :633-643
[2]   Bifurcations in one-dimensional piecewise smooth maps-theory and applications in switching circuits [J].
Banerjee, S ;
Karthik, MS ;
Yuan, GH ;
Yorke, JA .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2000, 47 (03) :389-394
[3]  
Banerjee S, 1997, IEEE POWER ELECTRON, P1337, DOI 10.1109/PESC.1997.616942
[4]  
Banerjee S., 2001, NONLINEAR PHENOMENA
[5]  
BUDD C, 1995, NATO ADV SCI INST SE, V464, P47
[6]   CHATTERING AND RELATED BEHAVIOR IN IMPACT OSCILLATORS [J].
BUDD, C ;
DUX, F .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 347 (1683) :365-389
[7]   UNIVERSAL BEHAVIOR OF IMPACT OSCILLATORS NEAR GRAZING-INCIDENCE [J].
CHIN, W ;
OTT, E ;
NUSSE, HE ;
GREBOGI, C .
PHYSICS LETTERS A, 1995, 201 (2-3) :197-204
[8]   Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems [J].
Di Bernardo, M ;
Feigin, MI ;
Hogan, SJ ;
Homer, ME .
CHAOS SOLITONS & FRACTALS, 1999, 10 (11) :1881-1908
[9]   STABILITY OF IDEAL THYRISTOR AND DIODE SWITCHING-CIRCUITS [J].
DOBSON, I .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (09) :517-529
[10]   Switching time bifurcations in a thyristor controlled reactor [J].
Jalali, S ;
Dobson, I ;
Lasseter, RH ;
Venkataramanan, G .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1996, 43 (03) :209-218