Traveling Wavefront Solutions for Reaction-Diffusion Equation with Small Delay

被引:3
作者
Zhao, Zhihong [1 ]
Ge, Weigao [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Beijing Inst Technol, Dept Appl Math, Beijing 100081, Peoples R China
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2011年 / 54卷 / 02期
关键词
Reaction-diffusion system; Small delay; Traveling wavefronts; Inertial manifold; Structural stability; MONOTONE ITERATION METHOD; DIFFERENTIAL EQUATIONS; SPATIOTEMPORAL DELAYS; SYSTEMS; EXISTENCE; THEOREM; MODEL;
D O I
10.1619/fesi.54.225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to study of traveling wavefronts of reaction-diffusion system with small discrete delay, where the reaction term is not necessarily monotone or quasi-monotone. By applying the theory of inertial manifold for small discrete delay equation, we prove the existence result of traveling wavefronts of reaction-diffusion system with small time delay.
引用
收藏
页码:225 / 236
页数:12
相关论文
共 50 条
[41]   Traveling wavefronts of a delayed temporally discrete reaction-diffusion equation [J].
Guo, Zhiming ;
Guo, Hongpeng ;
Chen, Yuming .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 496 (01)
[42]   Global stability of reaction-diffusion equation with nonlocal delay [J].
Qiu, Huanhuan ;
Ren, Beijia ;
Zou, Rong .
APPLIED MATHEMATICS LETTERS, 2025, 163
[43]   Traveling waves for reaction-diffusion PDE coupled to difference equation with nonlocal dispersal term and time delay [J].
Adimy, Mostafa ;
Chekroun, Abdennasser ;
Kazmierczak, Bogdan .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2022, 17
[44]   TRAVELING WAVE SOLUTIONS FOR TIME PERIODIC REACTION-DIFFUSION SYSTEMS [J].
Bo, Wei-Jian ;
Lin, Guo ;
Ruan, Shigui .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (09) :4329-4351
[45]   Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics [J].
Hou, Xiaojie ;
Leung, Anthony W. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (05) :2196-2213
[46]   Traveling waves for Nonlocal and Non-monotone Delayed Reaction-diffusion Equations [J].
Xu, Zhi Ting ;
Weng, Pei Xuan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (11) :2159-2180
[47]   Traveling fronts for a delayed reaction-diffusion system with a quiescent stage [J].
Wu, Shi-Liang ;
Zhao, Hai-Qin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) :3610-3621
[48]   An inverse problem for nonlocal reaction-diffusion equations with time-delay [J].
Yang, Lin ;
Xu, Dinghua .
APPLICABLE ANALYSIS, 2024, 103 (16) :3067-3085
[49]   On the geometry of wave solutions of a delayed reaction-diffusion equation [J].
Trofimchuk, Elena ;
Alvarado, Pedro ;
Trofimchuk, Sergei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (04) :1422-1444
[50]   Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications [J].
Wu, Shi-Liang ;
Hsu, Cheng-Hsiung .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (05) :1085-1112