The size-Ramsey number of trees

被引:15
作者
Dellamonica, Domingos, Jr. [1 ]
机构
[1] Emory Univ, Dept Math, Atlanta, GA 30322 USA
关键词
size-Ramsey number; trees; expander graphs; BOUNDED DEGREE; GRAPHS;
D O I
10.1002/rsa.20363
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a graph G, the size-Ramsey number (r) over cap (G) is the minimum number m for which there exists a graph F on m edges such that any two-coloring of the edges of F admits a monochromatic copy of G. In 1983, J. Beck introduced an invariant beta(.) for trees and showed that (r) over cap (T) = Omega(beta(T)). Moreover he conjectured that (r) over cap (T) = Theta(beta(T)). We settle this conjecture by providing a family of graphs and an embedding scheme for trees. (C) 2011 Wiley Periodicals, Inc. Random Struct. Alg., 40, 49-73, 2012
引用
收藏
页码:49 / 73
页数:25
相关论文
共 10 条
[1]   ON SIZE RAMSEY NUMBER OF PATHS, TREES, AND CIRCUITS .1. [J].
BECK, J .
JOURNAL OF GRAPH THEORY, 1983, 7 (01) :115-129
[2]  
BECK J, 1990, ALGORITHMS COMBINATO, V5, P34, DOI DOI 10.1007/978-3-642-72905-8_4
[3]  
Dellamonica D, 2008, PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P782
[4]  
Erdos P., 1978, Periodica Mathematica Hungarica, V9, P145, DOI 10.1007/BF02018930
[5]  
Faudree RJ, 2002, BOLYAI MATH STUD, V11, P291
[6]   EXPANDING GRAPHS CONTAIN ALL SMALL TREES [J].
FRIEDMAN, J ;
PIPPENGER, N .
COMBINATORICA, 1987, 7 (01) :71-76
[7]   THE SIZE-RAMSEY NUMBER OF TREES [J].
HAXELL, PE ;
KOHAYAKAWA, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1995, 89 (1-3) :261-274
[8]   THE SIZE RAMSEY NUMBER OF TREES WITH BOUNDED DEGREE [J].
KE, X .
RANDOM STRUCTURES & ALGORITHMS, 1993, 4 (01) :85-97
[9]   Bounds for dispersers, extractors, and depth-two superconcentrators [J].
Radhakrishnan, J ;
Ta-Shma, A .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2000, 13 (01) :2-24
[10]   On size Ramsey numbers of graphs with bounded degree [J].
Rödl, V ;
Szemerédi, E .
COMBINATORICA, 2000, 20 (02) :257-262