Some properties of complex matrix-variate generalized Dirichlet integrals

被引:1
作者
Jacob, J
George, S
Mathai, AM
机构
[1] St Thomas Coll, Dept Stat, Palai 686574, Kottayam, India
[2] Ctr Math Sci, Pala 686574, India
[3] McGill Univ, Montreal, PQ H3A 2T5, Canada
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2005年 / 115卷 / 03期
关键词
beta integrals; gamma integrals; complex matrix-variate beta random variables; type-2 Dirichlet model;
D O I
10.1007/BF02829655
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dirichlet integrals and the associated Dirichlet statistical densities are widely used in various areas. Generalizations of Dirichlet integrals and Dirichlet models to matrix-variate cases, when the matrices are real symmetric positive definite or hermitian positive definite, are available [4]. Real scalar variables case of the Dirichlet models are : generalized in various directions. One such generalization of the type-2 or inverted Dirichlet is looked into in this article. Matrix-variate analogue, when the matrices are hermitian positive definite, are worked out along with some properties which are mathematically and statistically interesting.
引用
收藏
页码:241 / 249
页数:9
相关论文
共 6 条
[1]  
Biyari K. H., 1991, IEEE T INFORMATION T, V39, P1076
[2]   MULTIVARIATE LIOUVILLE DISTRIBUTIONS [J].
GUPTA, RD ;
RICHARDS, DS .
JOURNAL OF MULTIVARIATE ANALYSIS, 1987, 23 (02) :233-256
[4]  
Mathai A. M., 1999, INTRO GEOMETRICAL PR
[5]  
Mathai A.M., 1997, JACOBIANS MATRIX TRA
[6]  
Mehta ML., 1967, Random Matrices and the Statistical Theory of Energy Levels