A clustering method combining differential evolution with the K-means algorithm

被引:120
作者
Kwedlo, Wojciech [1 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
关键词
Cluster analysis; Differential evolution; K-means algorithm; GENETIC ALGORITHM; OPTIMIZATION; SEARCH; SUM;
D O I
10.1016/j.patrec.2011.05.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The present paper considers the problem of partitioning a dataset into a known number of clusters using the sum of squared errors criterion (SSE). A new clustering method, called DE-KM, which combines differential evolution algorithm (DE) with the well known K-means procedure is described. In the method, the K-means algorithm is used to fine-tune each candidate solution obtained by mutation and crossover operators of DE. Additionally, a reordering procedure which allows the evolutionary algorithm to tackle the redundant representation problem is proposed. The performance of the DE-KM clustering method is compared to the performance of differential evolution, global K-means method, genetic K-means algorithm and two variants of the K-means algorithm. The experimental results show that if the number of clusters K is sufficiently large, DE-KM obtains solutions with lower SSE values than the other five algorithms. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1613 / 1621
页数:9
相关论文
共 38 条
[1]   NP-hardness of Euclidean sum-of-squares clustering [J].
Aloise, Daniel ;
Deshpande, Amit ;
Hansen, Pierre ;
Popat, Preyas .
MACHINE LEARNING, 2009, 75 (02) :245-248
[2]  
Anderberg M.R., 1973, CLUSTER ANAL APPL, DOI DOI 10.1016/C2013-0-06161-0
[3]  
[Anonymous], 2007, Uci machine learning repository
[4]  
[Anonymous], 1999, HPL-1999-124
[5]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[6]   On the Futility of Blind Search: An Algorithmic View of "No Free Lunch" [J].
Culberson, Joseph C. .
EVOLUTIONARY COMPUTATION, 1998, 6 (02) :109-127
[7]   Automatic clustering using an improved differential evolution algorithm [J].
Das, Swagatam ;
Abraham, Ajith ;
Konar, Amit .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2008, 38 (01) :218-237
[8]   An interior point algorithm for minimum sum-of-squares clustering [J].
Du Merle, O ;
Hansen, P ;
Jaumard, B ;
Mladenovic, N .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (04) :1485-1505
[9]   The use of multiple measurements in taxonomic problems [J].
Fisher, RA .
ANNALS OF EUGENICS, 1936, 7 :179-188
[10]   Genetic algorithms for large-scale clustering problems [J].
Franti, P ;
Kivijarvi, J ;
Kaukoranta, T ;
Nevalainen, O .
COMPUTER JOURNAL, 1997, 40 (09) :547-554