Universality of monopole mode and time evolution of a d-dimensional trapped interacting Bose gas

被引:12
作者
Ghosh, TK [1 ]
机构
[1] Inst Math Sci, Chennai 600113, India
关键词
D O I
10.1016/S0375-9601(01)00348-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a generalised Gross-Pitaevskii equation describing a d-dimensional harmonic trapped (with trap frequency omega (0)) weakly interacting Bose gas with a nonlinearity of order (2k + 1) and scaling exponent (ni of the interaction potential. Using the time-dependent variational analysis, we explicitly show that for a particular combination of n, k and d, the generalised GP equation has the universal monopole oscillation frequency 2 omega (0). We also find that the time-evolution of the width can be described universally by the same Hill's equation if the system satisfy that particular combination. We also obtain the condition for the exact self-similar solutions of the Gross-Pitaevskii equation. As an application, we discuss low-dimensional trapped Bose condensate state and Calogero model. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:222 / 227
页数:6
相关论文
共 29 条
[1]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[2]   BOSE-EINSTEIN CONDENSATION IN LOW-DIMENSIONAL TRAPS [J].
BAGNATO, V ;
KLEPPNER, D .
PHYSICAL REVIEW A, 1991, 44 (11) :7439-7441
[3]   Analytic results for the linear and nonlinear response of atoms in a trap with a model interaction [J].
Benjamin, SC ;
Quiroga, L ;
Johnson, NF .
PHYSICAL REVIEW A, 1996, 54 (05) :4309-4314
[4]   EVIDENCE OF BOSE-EINSTEIN CONDENSATION IN AN ATOMIC GAS WITH ATTRACTIVE INTERACTIONS [J].
BRADLEY, CC ;
SACKETT, CA ;
TOLLETT, JJ ;
HULET, RG .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1687-1690
[5]   SOLUTION OF A 3-BODY PROBLEM IN ONE DIMENSION [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2191-&
[6]   GROUND STATE OF A ONE-DIMENSIONAL N-BODY SYSTEM [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2197-&
[7]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[8]   BOSE-EINSTEIN CONDENSATION IN A GAS OF SODIUM ATOMS [J].
DAVIS, KB ;
MEWES, MO ;
ANDREWS, MR ;
VANDRUTEN, NJ ;
DURFEE, DS ;
KURN, DM ;
KETTERLE, W .
PHYSICAL REVIEW LETTERS, 1995, 75 (22) :3969-3973
[9]   Extended parametric resonances in nonlinear Schrodinger systems [J].
García-Ripoll, JJ ;
Pérez-García, VM ;
Torres, P .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1715-1718
[10]  
GHOSH PK, CONDMAT0102488