A note on: "The generalized Lienard polynomial differential systems x′ = y, y′ = -g(x) - f(x)y, with deg g = deg f+1, are not Liouvillian integrable" [Bull. Sci. math. 139 (2015) 214-227]

被引:4
作者
Gine, Jaume [1 ]
机构
[1] Univ Lleida, Dept Matemat, Avda Jaume II 69, Lleida 25001, Catalonia, Spain
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2020年 / 161卷
关键词
Lienard systems; Center problem; Order of a focus; 1ST INTEGRALS;
D O I
10.1016/j.bulsci.2020.102857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we give a counterexample to the main result of the work "The generalized Lienard polynomial differential systems x' = y, y' = -g(x) - f(x)y, with deg g = deg f + 1, are not Liouvillian integrable" [Bull. Sci. Math. 139 (2015) 214-227] and give the correct statement of the result. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:3
相关论文
共 6 条
[1]  
Christopher C.J., 1999, ELECT J DIFFER EQU, P49
[2]  
HAYASHI M, 1996, FUNKC EKVACIOJ-SER I, V39, P403
[3]   Liouvillian first integrals for a class of generalized Lienard polynomial differential systems [J].
Llibre, Jaume ;
Valls, Claudia .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (06) :1195-1210
[4]   Liouvillian Integrability Versus Darboux Polynomials [J].
Llibre, Jaume ;
Valls, Claudia ;
Zhang, Xiang .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2016, 15 (02) :503-515
[5]   The generalized Lienard polynomial differential systems x′ = y, y′ = -g(x) - f (x)y with deg g = deg f+1 are not Liouvillian integrable [J].
Llibre, Jaume ;
Valls, Claudia .
BULLETIN DES SCIENCES MATHEMATIQUES, 2015, 139 (02) :214-227
[6]   LIOUVILLIAN 1ST INTEGRALS OF DIFFERENTIAL-EQUATIONS [J].
SINGER, MF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 333 (02) :673-688