Faster MCMC for Gaussian latent position network models

被引:1
|
作者
Spencer, Neil A. [1 ]
Junker, Brian W. [2 ]
Sweet, Tracy M. [3 ]
机构
[1] Harvard Univ, Boston, MA 02115 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Univ Maryland, College Pk, MD 20742 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Hamiltonian Monte Carlo; network data; firefly Monte Carlo; latent space model; longitudinal network data; Bayesian computation; HAMILTONIAN MONTE-CARLO; INFERENCE;
D O I
10.1017/nws.2022.1
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Latent position network models are a versatile tool in network science; applications include clustering entities, controlling for causal confounders, and defining priors over unobserved graphs. Estimating each node's latent position is typically framed as a Bayesian inference problem, with Metropolis within Gibbs being the most popular tool for approximating the posterior distribution. However, it is well-known that Metropolis within Gibbs is inefficient for large networks; the acceptance ratios are expensive to compute, and the resultant posterior draws are highly correlated. In this article, we propose an alternative Markov chain Monte Carlo strategy-defined using a combination of split Hamiltonian Monte Carlo and Firefly Monte Carlo-that leverages the posterior distribution's functional form for more efficient posterior computation. We demonstrate that these strategies outperform Metropolis within Gibbs and other algorithms on synthetic networks, as well as on real information-sharing networks of teachers and staff in a school district.
引用
收藏
页码:20 / 45
页数:26
相关论文
共 50 条
  • [41] Latent local-to-unity models
    Wang, Xiaohu
    Yu, Jun
    ECONOMETRIC REVIEWS, 2023, 42 (07) : 586 - 611
  • [42] EFFICIENT BAYESIAN INFERENCE OF GENERAL GAUSSIAN MODELS ON LARGE PHYLOGENETIC TREES
    Bastide, Paul
    Ho, Lam Si Tung
    Baele, Guy
    Lemey, Philippe
    Suchard, Marc A.
    ANNALS OF APPLIED STATISTICS, 2021, 15 (02) : 971 - 997
  • [43] Latent factor models for density estimation
    Kundu, S.
    Dunson, D. B.
    BIOMETRIKA, 2014, 101 (03) : 641 - 654
  • [44] Deviance information criterion for latent variable models and misspecified models
    Li, Yong
    Yu, Jun
    Zeng, Tao
    JOURNAL OF ECONOMETRICS, 2020, 216 (02) : 450 - 493
  • [45] Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored
    Ranjan, Rakesh
    Sen, Rijji
    Upadhyay, Satyanshu K.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 214 (214)
  • [46] DIRECTIONAL TESTS IN GAUSSIAN GRAPHICAL MODELS
    Di Caterina, Claudia
    Reid, Nancy
    Sartori, Nicola
    STATISTICA SINICA, 2025, 35 (01) : 361 - 387
  • [47] GROUPS ACTING ON GAUSSIAN GRAPHICAL MODELS
    Draisma, Jan
    Kuhnt, Sonja
    Zwiernik, Piotr
    ANNALS OF STATISTICS, 2013, 41 (04) : 1944 - 1969
  • [48] Anchored Bayesian Gaussian mixture models
    Kunkel, Deborah
    Peruggia, Mario
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 3869 - 3913
  • [49] A modified expectation-maximization algorithm for latent Gaussian graphical model
    Zheng, Chaowen
    Huang, Jingfang
    Wood, Ian A.
    Wu, Yichao
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (02): : 612 - 637
  • [50] Comparing the real-world performance of exponential-family random graph models and latent order logistic models for social network analysis
    Clark, Duncan A.
    Handcock, Mark S.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 (02) : 566 - 587