Further results on H-matrices and their Schur complements

被引:19
作者
Cvetkovic, Ljiljana [1 ]
Kostic, Vladimir [1 ]
Kovacevic, Maja [2 ]
Szulc, Tomasz [3 ]
机构
[1] Univ Novi Sad, Fac Sci, Dept Math & Informat, Novi Sad 21000, Serbia
[2] Univ Novi Sad, Fac Tech Sci, Novi Sad 21000, Serbia
[3] Adam Mickiewicz Univ Poznan, Fac Math & Comp Sci, Poznan, Poland
关键词
H-matrices; Schur complement; diagonal scaling;
D O I
10.1016/j.amc.2007.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known [D. Carlson, T. Markham, Schur complements of diagonally dominant matrices, Czech. Math. J. 29 ( 104) ( 1979) 246-251, [ 1]] that the Schur complement of a strictly diagonally dominant matrix is strictly diagonally dominant. Also, if a matrix is an H-matrix, then its Schur complement is an H-matrix, too [ J. Liu, Y. Huang, Some properties on Schur complements of H-matrices and diagonally dominant matrices, Linear Algebra Appl. 389 ( 2004) 365-380, [ 8]]. Recent research showed that the same type of statement holds for some special subclasses of H-matrices, see, for example, Liu et al. [ J. Liu, Y. Huang, F. Zhang, The Schur complements of generalized doubly diagonally dominant matrices, Linear Algebra Appl. 378 ( 2004) 231-244]. The aim of this paper is to show that the proof of these results can be significantly simplified by using "scaling'' approach as in Zhang et al. [ F. Zhang et al., The Schur Complement and its Applications, Springer, New York, 2005] and to give another invariance result of this type. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:506 / 510
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 2004, SPRINGER SER COMPUT
[2]  
Carlson D., 1979, Czech. Math. J, V29, P246
[3]  
Cvetkovic L, 2004, ELECTRON T NUMER ANA, V18, P73
[4]   H-matrix theory vs. eigenvalue localization [J].
Cvetkovic, Ljiljana .
NUMERICAL ALGORITHMS, 2006, 42 (3-4) :229-245
[5]   Between Gersgorin and minimal Gersgorin sets [J].
Cvetkovic, Ljiljana ;
Kostic, Vladimir .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (02) :452-458
[6]  
Dashnic L. S., 1970, ZH VYCH MAT MAT FIZ, V10, P1321
[7]  
Dashnic L.S., 1970, COMP MATH MATH PHYS+, V5, P1092
[8]  
Horn RA., 2005, SCHUR COMPLEMENT ITS, DOI DOI 10.1007/B105056
[9]   Some properties on Schur complements of H-matrices and diagonally dominant matrices [J].
Liu, JZ ;
Huang, YQ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 389 :365-380
[10]   The Schur complements of generalized doubly diagonally dominant matrices [J].
Liu, JZ ;
Huang, YQ ;
Zhang, FZ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 378 :231-244