Continuous meshless approximations for nonconvex bodies by diffraction and transparency

被引:27
作者
Organ, D [1 ]
Fleming, M [1 ]
Terry, T [1 ]
Belytschko, T [1 ]
机构
[1] NORTHWESTERN UNIV,DEPT CIVIL ENGN & MECH,EVANSTON,IL 60208
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Continuous meshless approximations are developed for domains with non-convex boundaries, with emphasis on cracks. Two techniques are developed in the context of the element-free Galerkin method: a transparency method wherein smooth approximations are generated by making boundaries partially transparent, and a diffraction method, where the domain of influence wraps around a concave boundary. They are compared to the original method based on the visibility criterion in which the approximations are discontinuous in the vicinity of nonconvex boundaries. The performance of the methods is compared using two elastostatic examples: an infinite plate with a hole and a crack problem. The continuous approximations show only moderate imporvement in accuracy over the discontinous approximations, but yield significant improvements for enhanced bases, such as crack-tip singular functions.
引用
收藏
页码:225 / 235
页数:11
相关论文
共 20 条
[1]  
Anderson - T.L., 1991, FRACTURE MECH FUNDAM
[2]   ASSUMED DISPLACEMENT HYBRID FINITE-ELEMENT MODEL FOR LINEAR FRACTURE MECHANICS [J].
ATLURI, SN ;
KOBAYASHI, AS ;
NAKAGAKI, M .
INTERNATIONAL JOURNAL OF FRACTURE, 1975, 11 (02) :257-272
[3]  
BABUSKA I, UNPUB PARTITION UNIT
[4]   ELEMENT-FREE GALERKIN METHODS FOR STATIC AND DYNAMIC FRACTURE [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L ;
TABBARA, M .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1995, 32 (17-18) :2547-2570
[5]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[6]  
BELYTSCHKO T, IN PRESS J COMPUTATI
[7]  
Benzley S. E., 1974, International Journal for Numerical Methods in Engineering, V8, P537, DOI 10.1002/nme.1620080310
[8]  
DUARTE CA, 1995, 9505 U TEX AUST TEX
[9]  
FLEMING M, UNPUB INT J NUMERICA
[10]  
HEGEN D, 1994, NUMERICAL TECHNIQUES