Carbon Nitride-Aromatic Diimide-Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency

被引:461
作者
Kofuji, Yusuke [1 ,2 ]
Isobe, Yuki [1 ,2 ]
Shiraishi, Yasuhiro [1 ,2 ,4 ]
Sakamoto, Hirokatsu [1 ,2 ]
Tanaka, Shunsuke [5 ]
Ichikawa, Satoshi [3 ]
Hirai, Takayuki [1 ,2 ]
机构
[1] Osaka Univ, Res Ctr Solar Energy Chem, Toyonaka, Osaka 5608531, Japan
[2] Osaka Univ, Div Chem Engn, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
[3] Osaka Univ, Inst NanoSci Design, Toyonaka, Osaka 5608531, Japan
[4] Japan Sci & Technol Agcy JST, Precursory Res Embryon Sci & Technol PRESTO, Saitama 3320012, Japan
[5] Kansai Univ, Dept Chem Energy & Environm Engn, Suita, Osaka 5648680, Japan
关键词
BIMETALLIC ALLOY NANOPARTICLES; MOLECULAR-OXYGEN; FUEL-CELLS; WATER; DRIVEN; REDUCTION; H2O2; PERFORMANCE; OXIDATION; CATALYSTS;
D O I
10.1021/jacs.6b05806
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solar-to-chemical energy conversion is a challenging subject for renewable energy storage. In the past 40 years, overall water splitting into H-2 and O-2 by semiconductor photocatalysis has been studied extensively; however, they need noble metals and extreme care to avoid explosion of the mixed gases. Here we report that generating hydrogen peroxide (H2O2) from water and O-2 by organic semiconductor photocatalysts could provide a new basis for clean energy storage without metal and explosion risk. We found that carbon nitride aromatic diimide graphene nanohybrids prepared by simple hydrothermal calcination procedure produce H2O2 from pure water and O-2 under visible light (lambda > 420 nm). Photoexcitation of the semiconducting carbon nitride aromatic diimide moiety transfers their conduction band electrons to graphene and enhances charge separation. The valence band holes on the semiconducting moiety oxidize water, while the electrons on the graphene moiety promote selective two-electron reduction of O-2. This metal-free system produces H2O2 with solar-to-chemical energy conversion efficiency 0.20%, comparable to the highest levels achieved by powdered water-splitting photocatalysts.
引用
收藏
页码:10019 / 10025
页数:7
相关论文
共 57 条
  • [1] Molecular artificial photosynthesis
    Berardi, Serena
    Drouet, Samuel
    Francas, Laia
    Gimbert-Surinach, Carolina
    Guttentag, Miguel
    Richmond, Craig
    Stoll, Thibaut
    Llobet, Antoni
    [J]. CHEMICAL SOCIETY REVIEWS, 2014, 43 (22) : 7501 - 7519
  • [2] An improved Hummers method for eco-friendly synthesis of graphene oxide
    Chen, Ji
    Yao, Bowen
    Li, Chun
    Shi, Gaoquan
    [J]. CARBON, 2013, 64 : 225 - 229
  • [3] Semiconductor-based Photocatalytic Hydrogen Generation
    Chen, Xiaobo
    Shen, Shaohua
    Guo, Liejin
    Mao, Samuel S.
    [J]. CHEMICAL REVIEWS, 2010, 110 (11) : 6503 - 6570
  • [4] Choucair M, 2009, NAT NANOTECHNOL, V4, P30, DOI [10.1038/nnano.2008.365, 10.1038/NNANO.2008.365]
  • [5] Melem: A metal-free unit for photocatalytic hydrogen evolution
    Chu, Sheng
    Wang, Cuicui
    Feng, Jianyong
    Wang, Ying
    Zou, Zhigang
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (25) : 13519 - 13526
  • [6] Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes
    Dukovic, G
    White, BE
    Zhou, ZY
    Wang, F
    Jockusch, S
    Steigerwald, ML
    Heinz, TF
    Friesner, RA
    Turro, NJ
    Brus, LE
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (46) : 15269 - 15276
  • [7] Photochemistry of Anthracene-9,10-endoperoxide
    Fidder, Henk
    Lauer, Alexandra
    Freyer, Wolfgang
    Koeppe, Benjamin
    Heyne, Karsten
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (22) : 6289 - 6296
  • [8] Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite
    Gao, Erping
    Wang, Wenzhong
    Shang, Meng
    Xu, Jiehui
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (07) : 2887 - 2893
  • [9] Carbon Nanotube Membrane Stack for Flow-through Sequential Regenerative Electro-Fenton
    Gao, Guandao
    Zhang, Qiaoying
    Hao, Zhenwei
    Vecitis, Chad D.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (04) : 2375 - 2383
  • [10] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191