3D quantum Hall effects and nonlinear Hall effect

被引:22
作者
Li, Shuai [1 ,2 ,3 ,4 ]
Wang, C. M. [2 ,3 ,4 ,5 ]
Du, Z. Z. [2 ,3 ,4 ]
Qin, Fang [2 ,3 ,4 ]
Lu, Hai-Zhou [2 ,3 ,4 ]
Xie, X. C. [6 ,7 ,8 ]
机构
[1] Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China
[2] Southern Univ Sci & Technol SUSTech, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol SUSTech, Dept Phys, Shenzhen 518055, Peoples R China
[4] Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[5] Shanghai Normal Univ, Dept Phys, Shanghai 200234, Peoples R China
[6] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[7] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[8] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
上海市自然科学基金; 中国博士后科学基金; 中国国家自然科学基金;
关键词
PHASE-TRANSITION; WEYL; TRANSPORT;
D O I
10.1038/s41535-021-00399-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The classical and quantum Hall effects are important subjects in condensed matter physics. The emergent 3D quantum Hall effects and nonlinear Hall effect have attracted considerable interest recently, with the former elevating the quantum Hall effect to a higher dimension and the latter extending the Hall effect to higher-order responses. In this perspective, we briefly introduce these two new members of the Hall family and discuss the open questions and future research directions.
引用
收藏
页数:5
相关论文
共 70 条
[1]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[2]   Theory of the three-dimensional quantum hall effect in graphite [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Raghu, Srinivas ;
Arovas, Daniel P. .
PHYSICAL REVIEW LETTERS, 2007, 99 (14)
[3]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[4]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[5]   Three-dimensional quantum Hall effect in Weyl semimetals [J].
Chang, Mingqi ;
Geng, Hao ;
Sheng, Li ;
Xing, D. Y. .
PHYSICAL REVIEW B, 2021, 103 (24)
[6]   Field-Tunable One-Sided Higher-Order Topological Hinge States in Dirac Semimetals [J].
Chen, Rui ;
Liu, Tianyu ;
Wang, C. M. ;
Lu, Hai-Zhou ;
Xie, X. C. .
PHYSICAL REVIEW LETTERS, 2021, 127 (06)
[7]   Quantum Hall effect in wedge-shaped samples [J].
Cheng, Shu-guang ;
Jiang, Hua ;
Sun, Qing-Feng ;
Xie, X. C. .
PHYSICAL REVIEW B, 2020, 102 (07)
[8]   QUANTIZED HALL-EFFECT AND A NEW FIELD-INDUCED PHASE-TRANSITION IN THE ORGANIC SUPERCONDUCTOR (TMTSF)2PF6 [J].
COOPER, JR ;
KANG, W ;
AUBAN, P ;
MONTAMBAUX, G ;
JEROME, D ;
BECHGAARD, K .
PHYSICAL REVIEW LETTERS, 1989, 63 (18) :1984-1987
[9]   Quantum theory of the nonlinear Hall effect [J].
Du, Z. Z. ;
Wang, C. M. ;
Sun, Hai-Peng ;
Lu, Hai-Zhou ;
Xie, X. C. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   Disorder-induced nonlinear Hall effect with time-reversal symmetry [J].
Du, Z. Z. ;
Wang, C. M. X. ;
Li, Shuai ;
Lu, Hai-Zhou ;
Xie, X. C. .
NATURE COMMUNICATIONS, 2019, 10 (1)