H∞ filtering for fuzzy dynamical systems with D stability constraints

被引:177
作者
Nguang, SK [1 ]
Assawinchaichote, W [1 ]
机构
[1] Univ Auckland, Dept Elect & Elect Engn, Auckland 1, New Zealand
关键词
fuzzy system models; Lyapunov function; stabilizing controller;
D O I
10.1109/TCSI.2003.818624
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief addresses the problem of designing a filter for a class of fuzzy dynamical systems that guarantees that: 1) the L-2 gain from an exogenous input to a filter error is less or equal to a prescribed value and 2) the filter is quadratically stable in a prespecified linear matrix inequality (LMI) stability region. Based on an LMI approach, solutions to the problem of the H-infinity fuzzy filtering with quadratic D stability are derived in terms of a family of LMIs. Numerical simulation examples are presented to illustrate the theory development.
引用
收藏
页码:1503 / 1508
页数:6
相关论文
共 20 条
[1]  
ASSAWINCHAICHOT.W, THESIS U AUCKLAND AU
[2]  
BAMBANG R, 1993, PROCEEDINGS OF THE 1993 AMERICAN CONTROL CONFERENCE, VOLS 1-3, P2777
[3]   OPTIMUM PERFORMANCE LEVELS FOR MINIMAX FILTERS, PREDICTORS AND SMOOTHERS [J].
BASAR, T .
SYSTEMS & CONTROL LETTERS, 1991, 16 (05) :309-317
[4]   Robust pole placement in LMI regions [J].
Chilali, M ;
Gahinet, P ;
Apkarian, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (12) :2257-2270
[5]   H infinity design with pole placement constraints: An LMI approach [J].
Chilali, M ;
Gahinet, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :358-367
[6]  
Fu M., 1992, International Journal of Robust and Nonlinear Control, V2, P87, DOI 10.1002/rnc.4590020202
[7]  
Grimble M. J., 1988, Linear Circuits, Systems and Signal Processing: Theory and Application, P533
[9]  
LIMEBEER DJ, 1991, P 9 INT S MTNS KOB J, P317
[10]   FILTERING AND SMOOTHING IN AN H-INFINITY SETTING [J].
NAGPAL, KM ;
KHARGONEKAR, PP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (02) :152-166