Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm

被引:105
作者
Olivas, Frumen [1 ]
Valdez, Fevrier [1 ]
Melin, Patricia [1 ]
Sombra, Alberto [1 ]
Castillo, Oscar [1 ]
机构
[1] Tijuana Inst Technol, Tijuana, Mexico
关键词
GSA; Gravitational; Search; Algorithm; Optimization; Fuzzy; Logic; Dynamic; Parameter; Adaptation; PARTICLE SWARM OPTIMIZATION; DESIGN; SYSTEMS; CONTROLLERS;
D O I
10.1016/j.ins.2018.10.025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper a method for dynamically adjusting parameters in meta-heuristics based on interval type-2 fuzzy logic is proposed. Nowadays meta-heuristic algorithms have become a powerful choice in solving complex optimization problems. The gravitational search algorithm (GSA) based on the Newton laws of gravity and acceleration can be used to solve optimization problems achieving good results, however like in other optimization algorithms a critical issue is an appropriate adjustment of its parameters depending on the type of problem. In this paper the main contribution is a proposed method aimed at dynamic parameter adjustment in GSA with the help of type-2 fuzzy logic. Simulation results on benchmark problems show the advantages of the proposed approach. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:159 / 175
页数:17
相关论文
共 43 条
[1]  
[Anonymous], P 18 WORLD C INT FED
[2]  
[Anonymous], 2011, CONTROL INSTRUM
[3]  
[Anonymous], 2011, 2011 INT C EN AUT SI
[4]   A prototype classifier based on gravitational search algorithm [J].
Bahrololoum, Abbas ;
Nezamabadi-Pour, Hossein ;
Bahrololoum, Hamid ;
Saeed, Masoud .
APPLIED SOFT COMPUTING, 2012, 12 (02) :819-825
[5]  
Castillo O., 2013, INT J ADV ROBOT SYST
[6]   A review on the design and optimization of interval type-2 fuzzy controllers [J].
Castillo, Oscar ;
Melin, Patricia .
APPLIED SOFT COMPUTING, 2012, 12 (04) :1267-1278
[7]  
Cervantes L, 2011, LECT NOTES ARTIF INT, V7095, P1, DOI 10.1007/978-3-642-25330-0_1
[8]   Fuzzy sliding-mode control for ball and beam system with fuzzy ant colony optimization [J].
Chang, Yeong-Hwa ;
Chang, Chia-Wen ;
Tao, Chin-Wang ;
Lin, Hung-Wei ;
Taur, Jin-Shiuh .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (03) :3624-3633
[9]  
Duman S., 2011, 2011 International Symposium on Innovations in Intelligent Systems and Applications (INISTA 2011), P519, DOI 10.1109/INISTA.2011.5946133
[10]  
Eberhart RC., 2001, Swarm intelligence