Non-unitarity of the BKS transformation for symmetric spaces

被引:1
作者
Kaya, Oguzhan [1 ]
机构
[1] Galatasaray Univ, Ciragan Caddesi 36, TR-34347 Istanbul, Turkey
关键词
Geometric quantization; Symmetric spaces; BKS transformation; Lie groups; n-sphere; QUANTIZATION;
D O I
10.1016/j.geomphys.2019.103565
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the BKS transformation coming from geometric quantization of the cotangent bundle of Riemannian compact symmetric spaces is not always unitary. We will use representation theory of compact Lie groups and Peter-Weyl theory to deduce a simple method to study the unitarity of the transformation. In particular, we show that for S-5 this transformation is not unitary. Additionally, we show that in the limit h -> 0 (where h is Planck's constant) asymptotic unitarity holds for all compact symmetric spaces. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 14 条
[1]  
Baker J., 1999, Mathematics Magazine, V72, P392
[2]  
BrOcker T., 1995, GRADUATE TEXTS MATH, V98, px+313
[3]  
Faraut J., 2003, Semin. Congr., V7, P101
[4]   On the BKS pairing for Kahler quantizations of the cotangent bundle of a Lie group [J].
Florentino, C ;
Matias, P ;
Mourao, J ;
Nunes, JP .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 234 (01) :180-198
[5]   Geometric quantization and the generalized Segal-Bargmann transform for lie groups of compact type [J].
Hall, BC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 226 (02) :233-268
[6]  
Helgason S., 1994, MATH SURVEYS MONOGRA, V39, DOI DOI 10.1090/SURV/039
[7]  
Helgason S., 1984, PURE APPL MATH, V113, pxix+654
[8]   Kirillov's character formula, the holomorphic Peter-Weyltheorem, and the Blattner-Kostant-Sternberg pairing [J].
Huebschmann, Johannes .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (07) :833-848
[9]  
KIRILLOV AA, 1968, FUNCTIONAL ANAL ITS, V2, P40, DOI 10.1007/BF01075947
[10]  
Kirwin WD, 2013, J SYMPLECT GEOM, V11, P603