Capacity of Quantum Private Information Retrieval with Colluding Servers

被引:0
作者
Song, Seunghoan [1 ]
Hayashi, Masahito [2 ,3 ,4 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi, Japan
[2] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen, Peoples R China
[3] Peng Cheng Lab, Ctr Quantum Comp, Shenzhen, Peoples R China
[4] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
来源
2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2020年
关键词
COMMUNICATION; CODES;
D O I
10.1109/isit44484.2020.9174005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum private information retrieval (QPIR) is a protocol that a user retrieves one of f files from non-communicating n servers by downloading quantum systems without revealing the identity of the target file. As variants of the QPIR with stronger security requirements, the symmetric QPIR is that the files except for the target file are not leaked to the user, and the t-private QPIR is that the identity of the target file is kept secret even if at most t servers may collude to reveal the identity. The QPIR capacity is the maximum ratio of the one file size to the size of downloaded quantum systems, and we prove that the symmetric t-private QPIR capacity is min{1, 2(n - t)/n} for any 1 <= t < n. We construct a capacity-achieving QPIR protocol by the stabilizer formalism and prove the optimality of our protocol. The proposed capacity is greater than the classical counterpart. The full version is accessible at: https://arxiv.org/pdf/2001.04436.
引用
收藏
页码:1077 / 1082
页数:6
相关论文
共 38 条
[1]   On Quantum Advantage in Information Theoretic Single-Server PIR [J].
Aharonov, Dorit ;
Brakerski, Zvika ;
Chung, Kai-Min ;
Green, Ayal ;
Lai, Ching-Yi ;
Sattath, Or .
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2019, PT III, 2019, 11478 :219-246
[2]  
[Anonymous], 2012, Theory of Computing
[3]   The Capacity of Private Information Retrieval from Byzantine and Colluding Databases [J].
Banawan, Karim ;
Ulukus, Sennur .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (02) :1206-1219
[4]   The Capacity of Private Information Retrieval From Coded Databases [J].
Banawan, Karim ;
Ulukus, Sennur .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (03) :1945-1956
[5]   Quantum Private Information Retrieval has Linear Communication Complexity [J].
Baumeler, Aemin ;
Broadbent, Anne .
JOURNAL OF CRYPTOLOGY, 2015, 28 (01) :161-175
[6]  
Beimel A, 2003, LECT NOTES COMPUT SC, V2576, P326
[7]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[8]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[9]   Secure Network Code for Adaptive and Active Attacks With No-Randomness in Intermediate Nodes [J].
Cai, Ning ;
Hayashi, Masahito .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (03) :1428-1448
[10]   Secure Network Coding on a Wiretap Network [J].
Cai, Ning ;
Yeung, Raymond W. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (01) :424-435