Charge stabilization in nonpolar solvents

被引:285
作者
Hsu, MF
Dufresne, ER [1 ]
Weitz, DA
机构
[1] Yale Univ, Dept Mech Engn, New Haven, CT 06520 USA
[2] Harvard Univ, DEAS, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
D O I
10.1021/la046751m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
While the important role of electrostatic interactions in aqueous colloidal suspensions is widely known and reasonably well-understood, their relevance to nonpolar suspensions remains mysterious. We measure the interaction potentials of colloidal particles in a nonpolar solvent with reverse micelles. We find surprisingly strong electrostatic interactions characterized by surface potentials, vertical bar e zeta vertical bar, from 2.0 to 4.4 k(B)T and screening lengths, kappa(-1), from 0.2 to 1.4 mu m. Interactions depend on the concentration of reverse micelles and the degree of confinement. Furthermore, when the particles are weakly confined, the values of vertical bar e zeta vertical bar and kappa extracted from interaction measurements are consistent with bulk measurements of conductivity and electrophoretic mobility. A simple thermodynamic model, relating the structure of the micelles to the equilibrium ionic strength, is in good agreement with both conductivity and interaction measurements. Since dissociated ions are solubilized by reverse micelles, the entropic incentive to charge a particle surface is qualitatively changed from aqueous systems, and surface entropy plays an important role.
引用
收藏
页码:4881 / 4887
页数:7
相关论文
共 27 条
[1]   CHARGE RENORMALIZATION, OSMOTIC-PRESSURE, AND BULK MODULUS OF COLLOIDAL CRYSTALS - THEORY [J].
ALEXANDER, S ;
CHAIKIN, PM ;
GRANT, P ;
MORALES, GJ ;
PINCUS, P ;
HONE, D .
JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (11) :5776-5781
[2]   THE PREPARATION OF POLY(METHYL METHACRYLATE) LATTICES IN NONAQUEOUS MEDIA [J].
ANTL, L ;
GOODWIN, JW ;
HILL, RD ;
OTTEWILL, RH ;
OWENS, SM ;
PAPWORTH, S ;
WATERS, JA .
COLLOIDS AND SURFACES, 1986, 17 (01) :67-78
[3]   Charging and aggregation properties of carboxyl latex particles: Experiments versus DLVO theory [J].
Behrens, SH ;
Christl, DI ;
Emmerzael, R ;
Schurtenberger, P ;
Borkovec, M .
LANGMUIR, 2000, 16 (06) :2566-2575
[4]   Pair interaction of charged colloidal spheres near a charged wall [J].
Behrens, SH ;
Grier, DG .
PHYSICAL REVIEW E, 2001, 64 (05) :4-050401
[5]   Direct measurement of surface forces due to charging of solids immersed in a nonpolar liquid [J].
Briscoe, WH ;
Horn, RG .
LANGMUIR, 2002, 18 (10) :3945-3956
[6]   Density-dependent pair interactions in 2D colloidal suspensions [J].
Brunner, M ;
Bechinger, C ;
Strepp, W ;
Lobaskin, V ;
von Grünberg, HH .
EUROPHYSICS LETTERS, 2002, 58 (06) :926-932
[7]   An electrophoretic ink for all-printed reflective electronic displays [J].
Comiskey, B ;
Albert, JD ;
Yoshizawa, H ;
Jacobson, J .
NATURE, 1998, 394 (6690) :253-255
[8]   Methods of digital video microscopy for colloidal studies [J].
Crocker, JC ;
Grier, DG .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 179 (01) :298-310
[9]   When like charges attract: The effects of geometrical confinement on long-range colloidal interactions [J].
Crocker, JC ;
Grier, DG .
PHYSICAL REVIEW LETTERS, 1996, 77 (09) :1897-1900
[10]   MICROSCOPIC MEASUREMENT OF THE PAIR INTERACTION POTENTIAL OF CHARGE-STABILIZED COLLOID [J].
CROCKER, JC ;
GRIER, DG .
PHYSICAL REVIEW LETTERS, 1994, 73 (02) :352-355