High-Throughput Production With Improved Functionality and Graphitization of Carbon Fine Fibers Developed from Sodium Chloride-Polyacrylonitrile Precursors

被引:10
作者
Akia, Mandana [1 ]
Cremar, Lee [1 ]
Seas, Manuel [2 ]
Villarreal, Jahaziel [1 ]
Valdez, Alejandra [1 ]
Alcoutlabi, Mataz [1 ]
Lozano, Karen [1 ]
机构
[1] Univ Texas Rio Grande Valley, Dept Mech Engn, Edinburg, TX 78539 USA
[2] Drexel Univ, Sch Biomed Engn Sci & Hlth Sci, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
LITHIUM-ION BATTERIES; ELECTROCHEMICAL CAPACITORS; NANOTUBE FIBERS; NANOFIBERS; PERFORMANCE; STORAGE; ENERGY; SUPERCAPACITORS; SURFACE; ANODE;
D O I
10.1002/pen.24816
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Fine polyacrylonitrile (PAN) fibers were produced through a scalable centrifugal spinning process. Sodium chloride (NaCl) was added to the PAN-dimethylformamide solution to decrease the surface tension and consequently promote a decrease in fiber diameter while increasing the fiber output. The fiber preparation process involved the centrifugal spinning of the PAN-based solution; developed fibers were stabilized in air at 240 degrees C followed by carbonization at 800 degrees C under a Nitrogen atmosphere. The addition of sodium chloride to the PAN solution led to a 37% decrease in the carbon fiber diameter. The carbon fibers were analyzed by scanning electron microcopy, transmission electron microscopy (TEM), X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and electrochemical experiments. The TEM results revealed improved graphitization with the addition of sodium chloride. The XPS analysis showed increased functionality (e.g. O-2) on the surface of carbon fibers obtained from PAN/NaCl precursor fibers. A significant improvement was achieved in the electrochemical performance of carbon fibers made from PAN/NaCl precursor fibers compared to those made from pure PAN precursor fibers. POLYM. ENG. SCI., 58:2047-2054, 2018. (c) 2018 Society of Plastics Engineers
引用
收藏
页码:2047 / 2054
页数:8
相关论文
共 37 条
[1]   Composite Nanofibers as Advanced Materials for Li-ion, Li-O2 and Li-S Batteries [J].
Agubra, Victor A. ;
Zuniga, Luis ;
Flores, David ;
Villareal, Jahaziel ;
Alcoutlabi, Mataz .
ELECTROCHIMICA ACTA, 2016, 192 :529-550
[2]   Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J].
Behabtu, Natnael ;
Young, Colin C. ;
Tsentalovich, Dmitri E. ;
Kleinerman, Olga ;
Wang, Xuan ;
Ma, Anson W. K. ;
Bengio, E. Amram ;
ter Waarbeek, Ron F. ;
de Jong, Jorrit J. ;
Hoogerwerf, Ron E. ;
Fairchild, Steven B. ;
Ferguson, John B. ;
Maruyama, Benji ;
Kono, Junichiro ;
Talmon, Yeshayahu ;
Cohen, Yachin ;
Otto, Marcin J. ;
Pasquali, Matteo .
SCIENCE, 2013, 339 (6116) :182-186
[3]   Nitrogen modification of highly porous carbon for improved supercapacitor performance [J].
Candelaria, Stephanie L. ;
Garcia, Betzaida B. ;
Liu, Dawei ;
Cao, Guozhong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (19) :9884-9889
[4]  
Chen R., 2017, J MAT CHEM A
[5]   Template-directed materials for rechargeable lithium-ion batteries [J].
Cheng, Fangyi ;
Tao, Zhanliang ;
Liang, Jing ;
Chen, Jun .
CHEMISTRY OF MATERIALS, 2008, 20 (03) :667-681
[6]   Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors [J].
Choi, Daiwon ;
Blomgren, George E. ;
Kumta, Prashant N. .
ADVANCED MATERIALS, 2006, 18 (09) :1178-+
[7]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[8]   Super-tough carbon-nanotube fibres -: These extraordinary composite fibres can be woven into electronic textiles. [J].
Dalton, AB ;
Collins, S ;
Muñoz, E ;
Razal, JM ;
Ebron, VH ;
Ferraris, JP ;
Coleman, JN ;
Kim, BG ;
Baughman, RH .
NATURE, 2003, 423 (6941) :703-703
[9]  
Feng L., 2002, Angewandte Chemie, V114, P1269, DOI [DOI 10.1002/1521-3757(20020402)114:7<1269::AID-ANGE1269>3.0.CO
[10]  
2-E, 10.1002/1521-3757(20020402)114:73.0.CO