Design of Highly Efficient Thermoelectric Materials: Tailoring Reciprocal-Space Properties by Real-Space Modification

被引:75
作者
Zhu, Hao [1 ]
Xiao, Chong [1 ]
Xie, Yi [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
real space; reciprocal space; thermoelectrics; POWER-FACTOR ENHANCEMENT; THERMAL-CONDUCTIVITY; PERFORMANCE; FIGURE; BANDS; CONVERGENCE; DISTORTION; CHEMISTRY; LATTICE; MERIT;
D O I
10.1002/adma.201802000
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although restricted by the poor performance at present, thermoelectric materials for power-generation devices and solid-state Peltier coolers still possess unlimited vitality, thus capturing considerable attention. Understanding and manipulating the electrical and thermal transport mechanisms in thermoelectrics play significant roles in tailoring the properties of various thermoelectric materials. The transport behavior of electrons and phonons are closely related to the chemical composition and structure, which are defined in real space. Meanwhile, transport properties are also contingent on the band structure and phonon spectrum, both of which are represented in the reciprocal-space first Brillouin zone. Real space and reciprocal space are bridged by the Fourier transform, and the combination of real-space and reciprocal-space properties will provide more possibilities for regulating transport characteristics. Herein, a compendious discussion of the internal connection between real space and reciprocal space, and the underlying physics and chemistry is presented. Then, how the relationship between real and reciprocal space provides additional insights to govern electrical and thermal transport parameters is elaborated upon, thereby enabling the discovery and optimization of thermoelectric materials. In conclusion, specific challenges and feasible directions are discussed.
引用
收藏
页数:15
相关论文
共 73 条
[1]   Ab initio study of deep defect states in narrow band-gap semiconductors:: Group III impurities in PbTe [J].
Ahmad, S ;
Hoang, K ;
Mahanti, SD .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)
[2]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[3]   Low-Dimensional Transport and Large Thermoelectric Power Factors in Bulk Semiconductors by Band Engineering of Highly Directional Electronic States [J].
Bilc, Daniel I. ;
Hautier, Geoffroy ;
Waroquiers, David ;
Rignanese, Gian-Marco ;
Ghosez, Philippe .
PHYSICAL REVIEW LETTERS, 2015, 114 (13)
[4]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[5]   Strained endotaxial nanostructures with high thermoelectric figure of merit [J].
Biswas, Kanishka ;
He, Jiaqing ;
Zhang, Qichun ;
Wang, Guoyu ;
Uher, Ctirad ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE CHEMISTRY, 2011, 3 (02) :160-166
[6]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[7]   CHARGE AND SPIN-DENSITY WAVES [J].
BROWN, S ;
GRUNER, G .
SCIENTIFIC AMERICAN, 1994, 270 (04) :50-56
[8]   Topological change of the fermi surface in low-density Rashba gases: Application to superconductivity [J].
Cappelluti, E. ;
Grimaldi, C. ;
Marsiglio, F. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[9]   Avoided crossing of rattler modes in thermoelectric materials [J].
Christensen, Mogens ;
Abrahamsen, Asger B. ;
Christensen, Niels B. ;
Juranyi, Fanni ;
Andersen, Niels H. ;
Lefmann, Kim ;
Andreasson, Jakob ;
Bahl, Christian R. H. ;
Iversen, Bo B. .
NATURE MATERIALS, 2008, 7 (10) :811-815
[10]   CsBi4Te6:: A high-performance thermoelectric material for low-temperature applications [J].
Chung, DY ;
Hogan, T ;
Brazis, P ;
Rocci-Lane, M ;
Kannewurf, C ;
Bastea, M ;
Uher, C ;
Kanatzidis, MG .
SCIENCE, 2000, 287 (5455) :1024-1027