An approach problem for a control system with an unknown parameter

被引:14
作者
Ershov, A. A. [1 ]
Ushakov, V. N. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Ekaterinburg, Russia
基金
俄罗斯科学基金会;
关键词
control; control system; differential inclusion; approach problem; target set; unknown constant parameter; GAME;
D O I
10.1070/SM8761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A control system with an unknown constant parameter is considered on a finite time interval. In the paper the solvability set is taken to contain only those initial positions of the system such that for each admissible value of the parameter a control taking the system to a prescribed target set exists. A numerical algorithm is designed that constructs an approximate solution, that is, a control on a prescribed interval of time which ensures that the motion of the control system occurs in a certain small neighbourhood of the target set.
引用
收藏
页码:1312 / 1352
页数:41
相关论文
共 26 条
[1]  
Afanas'ev V. N., 2003, MATH THEORY CONTROL, V341
[2]  
Bratus' A. S., 2010, DYNAMICAL SYSTEMS MO
[3]  
Chernous'ko F. L., 2006, METHODS CONTROL NONL
[4]  
Denisov A.M., 1994, INTRO THEORY INVERSE
[5]   Existence of the value and saddle point in positional differential games for neutral-type systems [J].
Gomoyunov, M., I ;
Lukoyanov, N. Yu ;
Plaksin, A. R. .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (02) :101-112
[6]   Construction of a Maximal Stable Bridge in Games with Simple Motions on the Plane [J].
Kamneva, L. V. ;
Patsko, V. S. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 292 :S125-S139
[7]  
KHRIPUNOV AP, 1992, THESIS
[8]  
Krasovskii N. N., 1970, Game Problems of the Encounter of Motions
[9]  
Krasovskii NN., 1974, Positional Differential Games
[10]  
KRYAZHIMSKII AV, 2000, P STEKLOV I MATH+, V6, P131