Equitable Vertex Arboricity Conjecture Holds for Graphs with Low Degeneracy

被引:3
作者
Zhang, Xin [1 ]
Niu, Bei [1 ]
Li, Yan [1 ]
Li, Bi [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Equitable coloring; tree-coloring; vertex arboricity; degeneracy; POINT-ARBORICITY; NETWORKS;
D O I
10.1007/s10114-021-0663-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equitable tree-coloring can formulate a structure decomposition problem on the communication network with some security considerations. Namely, an equitable tree-k-coloring of a graph is a vertex coloring using k distinct colors such that every color class induces a forest and the sizes of any two color classes differ by at most one. In this paper, we show some theoretical results on the equitable tree-coloring of graphs by proving that every d-degenerate graph with maximum degree at most Delta is equitably tree-k-colorable for every integer k >= (Delta + 1)/2 provided that Delta >= 9.818d, confirming the equitable vertex arboricity conjecture for graphs with low degeneracy.
引用
收藏
页码:1293 / 1302
页数:10
相关论文
共 23 条
[1]   Metric Tree-Like Structures in Real-World Networks: An Empirical Study [J].
Abu-Ata, Muad ;
Dragan, Feodor F. .
NETWORKS, 2016, 67 (01) :49-68
[2]   POINT-ARBORICITY OF PLANAR GRAPHS [J].
CHARTRAND, G ;
KRONK, HV .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (176P) :612-+
[3]   Equitable vertex arboricity of 5-degenerate graphs [J].
Chen, Guantao ;
Gao, Yuping ;
Shan, Songling ;
Wang, Guanghui ;
Wu, Jianliang .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) :426-432
[4]   Equitable improper choosability of graphs [J].
Drgas-Burchardt, Ewa ;
Furmanczyk, Hanna ;
Sidorowicz, ElZbieta .
THEORETICAL COMPUTER SCIENCE, 2020, 844 :34-45
[5]   Equitable d-degenerate Choosability of Graphs [J].
Drgas-Burchardt, Ewa ;
Furmanczyk, Hanna ;
Sidorowicz, Elzbieta .
COMBINATORIAL ALGORITHMS, IWOCA 2020, 2020, 12126 :251-263
[6]   Equitable List Vertex Colourability and Arboricity of Grids [J].
Drgas-Burchardt, Ewa ;
Dybizbanski, Janusz ;
Furmanczyk, Hanna ;
Sidorowicz, Elzbieta .
FILOMAT, 2018, 32 (18) :6353-6374
[7]   Equitable partition of graphs into induced forests [J].
Esperet, Louis ;
Lemoine, Laetitia ;
Maffray, Frederic .
DISCRETE MATHEMATICS, 2015, 338 (08) :1481-1483
[8]   The linear (n-1)-arboricity of some lexicographic product graphs [J].
He, Shengjie ;
Hao, Rong-Xia ;
Zuo, Liancui .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 :152-163
[9]  
Izenman AJ, 2008, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-0-387-78189-1_1
[10]  
Kaul H., ARXIV200808926MATHCO