On the initial value problem for the nonlinear fractional Rayleigh-Stokes equation

被引:6
作者
Nguyen Hoang Luc [1 ,2 ,3 ]
Do Lan [4 ]
O'Regan, Donal [5 ]
Nguyen Anh Tuan [3 ]
Zhou, Yong [6 ]
机构
[1] Univ Sci Ho Chi Minh City, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[3] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
[4] Thuyloi Univ, Dept Math, 175 Tay Son Dong Da, Hanoi, Vietnam
[5] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[6] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
关键词
Fractional Rayleigh-Stokes equation; initial value problem; existence; regularity; Riemann-Liouville derivative; blow-up; GENERALIZED 2ND-GRADE FLUID; COMPUTATIONAL APPROACH;
D O I
10.1007/s11784-021-00897-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an initial-boundary value problem for the nonlinear fractional Rayleigh-Stokes equation is studied in two cases, namely when the source term is globally Lipschitz or locally Lipschitz. The time-fractional derivative used in this work is the classical Riemann-Liouville derivative. Thanks to the spectral decomposition, a fixed point argument, and some useful function spaces, we establish global well-posed results for our problem. Furthermore, we demonstrate that the mild solution exists globally or blows up in finite time.
引用
收藏
页数:28
相关论文
共 29 条
[1]  
Akram T., 2021, ENG COMPUT-GERMANY, V1, P5
[2]   A Numerical Approach of a Time Fractional Reaction-Diffusion Model with a Non-Singular Kernel [J].
Akram, Tayyaba ;
Abbas, Muhammad ;
Ali, Ajmal ;
Iqbal, Azhar ;
Baleanu, Dumitru .
SYMMETRY-BASEL, 2020, 12 (10) :1-19
[3]   An efficient numerical technique for solving time fractional Burgers equation [J].
Akram, Tayyaba ;
Abbas, Muhammad ;
Riaz, Muhammad Bilal ;
Ismail, Ahmad Izani ;
Ali, Norhashidah Mohd .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) :2201-2220
[4]   Novel Numerical Approach Based on Modified Extended Cubic B-Spline Functions for Solving Non-Linear Time-Fractional Telegraph Equation [J].
Akram, Tayyaba ;
Abbas, Muhammad ;
Iqbal, Azhar ;
Baleanu, Dumitru ;
Asad, Jihad H. .
SYMMETRY-BASEL, 2020, 12 (07)
[5]   Redefined Extended Cubic B-Spline Functions for Numerical Solution of Time-Fractional Telegraph Equation [J].
Amin, Muhammad ;
Abbas, Muhammad ;
Baleanu, Dumitru ;
Iqbal, Muhammad Kashif ;
Riaz, Muhammad Bilal .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 127 (01) :361-384
[6]   Numerical Treatment of Time-Fractional Klein-Gordon Equation Using Redefined Extended Cubic B-Spline Functions [J].
Amin, Muhammad ;
Abbas, Muhammad ;
Iqbal, Muhammad Kashif ;
Baleanu, Dumitru .
FRONTIERS IN PHYSICS, 2020, 8
[7]   Identification of source term for the Rayleigh-Stokes problem with Gaussian random noise [J].
Anh Triet Nguyen ;
Vu Cam Hoan Luu ;
Hoang Luc Nguyen ;
Huy Tuan Nguyen ;
Van Thinh Nguyen .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (14) :5593-5601
[8]   An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid [J].
Bazhlekova, Emilia ;
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
NUMERISCHE MATHEMATIK, 2015, 131 (01) :1-31
[9]   Viscoelastic flows with fractional derivative models: Computational approach by convolutional calculus of Dimovski [J].
Bazhlekova, Emilia ;
Bazhlekov, Ivan .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) :954-976
[10]  
Brezis H, 2011, UNIVERSITEXT, P1