Least gradient problems with Neumann boundary condition

被引:9
作者
Moradifam, Amir [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
EQUATION;
D O I
10.1016/j.jde.2017.08.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study existence of minimizers of the least gradient problem inf (v is an element of BVg) integral(Omega) phi(x,Du), where BVg = {v is an element of BV(Omega) : integral(partial derivative Omega) gv = 1}, phi(x, p) : Omega x R-n -> R is a convex, continuous, and homogeneous function of degree 1 with respect to the p variable, and g satisfies the compatibility condition integral(partial derivative Omega) gds = 0. We prove that for every 0 not equivalent to g is an element of L-infinity (partial derivative Omega) there are infinitely many minimizers in BV (Omega). Moreover there exists a divergence free vector field T is an element of (L-infinity (Omega))(n) that determines the structure of level sets of all minimizers, i.e. T determines Du/vertical bar Du vertical bar-a.e. in Omega, for every minimizer u. We also prove some existence results for general 1-Laplacian type equations with Neumann boundary condition. A numerical algorithm is presented that simultaneously finds T and a minimizer of the above least gradient problem. Applications of the results in conductivity imaging are discussed. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:7900 / 7918
页数:19
相关论文
共 40 条
[1]   A LUSIN TYPE THEOREM FOR GRADIENTS [J].
ALBERTI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :110-118
[2]   A NOTION OF TOTAL VARIATION DEPENDING ON A METRIC WITH DISCONTINUOUS COEFFICIENTS [J].
AMAR, M ;
BELLETTINI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (01) :91-133
[3]  
Andreu F, 2005, ASYMPTOTIC ANAL, V43, P9
[4]  
Andreu F., 2004, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics, DOI 10.1007/978-3-0348-7928-6
[5]  
[Anonymous], 1983, AUGMENTED LAGRANGIAN, DOI DOI 10.1016/S0168-2024(08)70034-1
[6]  
ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P294
[7]   Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular [J].
Bauschke, Heinz H. ;
Martin-Marquez, Victoria ;
Moffat, Sarah M. ;
Wang, Xianfu .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[8]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[9]  
Brezis H., 2011, FUNCTIONAL ANAL SOBO
[10]  
Cai J. F., 2009, TECHNICAL REPORT