Sox2 Uses Multiple Domains to Associate with Proteins Present in Sox2-Protein Complexes

被引:48
作者
Cox, Jesse L. [1 ]
Mallanna, Sunil K. [1 ]
Luo, Xu [1 ]
Rizzino, Angie [1 ,2 ]
机构
[1] Univ Nebraska Med Ctr, Eppley Inst Res Canc & Allied Dis, Omaha, NE USA
[2] Univ Nebraska Med Ctr, Dept Biochem & Mol Biol, Omaha, NE USA
基金
美国国家卫生研究院;
关键词
EMBRYONIC STEM-CELLS; INTERACTION NETWORK; TRANSCRIPTION FACTORS; CARCINOMA-CELLS; DIFFERENTIATION; EXPRESSION; OCT4; GENE; PLURIPOTENCY; BINDING;
D O I
10.1371/journal.pone.0015486
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Master regulators, such as Sox2, Oct4 and Nanog, control complex gene networks necessary for the self-renewal and pluripotency of embryonic stem cells (ESC). These master regulators associate with co-activators and co-repressors to precisely control their gene targets. Recent studies using proteomic analysis have identified a large, diverse group of coactivators and co-repressors that associate with master regulators, including Sox2. In this report, we examined the size distribution of nuclear protein complexes containing Sox2 and its associated proteins HDAC1, Sall4 and Lin28. Interestingly, we determined that Sox2 and HDAC1 associate with protein complexes that vary greatly in size; whereas, Lin28 primarily associates with smaller complexes, and Sall4 primarily associates with larger complexes. Additionally, we examined the domains of Sox2 necessary to mediate its association with its partner proteins Sall4, HDAC1 and HDAC2. We determined that Sox2 uses multiple and distinct domains to associate with its partner proteins. We also examined the domains of Sox2 necessary to mediate its self-association, and we determined that Sox2 self-association is mediated through multiple domains. Collectively, these studies provide novel insights into how Sox2 is able to associate with a wide array of nuclear proteins that control gene transcription.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Multipotent cell lineages in early mouse development depend on SOX2 function [J].
Avilion, AA ;
Nicolis, SK ;
Pevny, LH ;
Perez, L ;
Vivian, N ;
Lovell-Badge, R .
GENES & DEVELOPMENT, 2003, 17 (01) :126-140
[2]   Acetylation of Sox2 Induces Its Nuclear Export in Embryonic Stem Cells [J].
Baltus, Gretchen A. ;
Kowalski, Michael P. ;
Zhai, Huili ;
Tutter, Antonin V. ;
Quinn, Douglas ;
Wall, Daniel ;
Kadam, Shilpa .
STEM CELLS, 2009, 27 (09) :2175-2184
[3]   Dimerization of SOX9 is required for chondrogenesis, but not for sex determination [J].
Bernard, P ;
Tang, PY ;
Dewing, P ;
Harley, VR ;
Vilain, E .
HUMAN MOLECULAR GENETICS, 2003, 12 (14) :1755-1765
[4]   Elevating the levels of Sox2 in embryonal carcinoma cells and embryonic stem cells inhibits the expression of Sox2:Oct-3/4 target genes [J].
Boer, Brian ;
Kopp, Janel ;
Mallanna, Sunil ;
Desler, Michelle ;
Chakravarthy, Harini ;
Wilder, Phillip J. ;
Bernadt, Cory ;
Rizzino, Angie .
NUCLEIC ACIDS RESEARCH, 2007, 35 (06) :1773-1786
[5]   Core transcriptional regulatory circuitry in human embryonic stem cells [J].
Boyer, LA ;
Lee, TI ;
Cole, MF ;
Johnstone, SE ;
Levine, SS ;
Zucker, JR ;
Guenther, MG ;
Kumar, RM ;
Murray, HL ;
Jenner, RG ;
Gifford, DK ;
Melton, DA ;
Jaenisch, R ;
Young, RA .
CELL, 2005, 122 (06) :947-956
[6]  
CHAKRAVARTHY H, 2010, FASEB J IN PRESS
[7]   Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells [J].
Chambers, I ;
Colby, D ;
Robertson, M ;
Nichols, J ;
Lee, S ;
Tweedie, S ;
Smith, A .
CELL, 2003, 113 (05) :643-655
[8]   Integration of external signaling pathways with the core transcriptional network in embryonic stem cells [J].
Chen, Xi ;
Xu, Han ;
Yuan, Ping ;
Fang, Fang ;
Huss, Mikael ;
Vega, Vinsensius B. ;
Wong, Eleanor ;
Orlov, Yuriy L. ;
Zhang, Weiwei ;
Jiang, Jianming ;
Loh, Yuin-Han ;
Yeo, Hock Chuan ;
Yeo, Zhen Xuan ;
Narang, Vipin ;
Govindarajan, Kunde Ramamoorthy ;
Leong, Bernard ;
Shahab, Atif ;
Ruan, Yijun ;
Bourque, Guillaume ;
Sung, Wing-Kin ;
Clarke, Neil D. ;
Wei, Chia-Lin ;
Ng, Huck-Hui .
CELL, 2008, 133 (06) :1106-1117
[9]   PARP1 Poly(ADP-ribosyl)ates Sox2 to Control Sox2 Protein Levels and FGF4 Expression during Embryonic Stem Cell Differentiation [J].
Gao, Furong ;
Kwon, Sung Won ;
Zhao, Yingming ;
Jin, Ying .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (33) :22263-22273
[10]   L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer [J].
Han, Yu ;
Lefebvre, Veronique .
MOLECULAR AND CELLULAR BIOLOGY, 2008, 28 (16) :4999-5013