A Path Integral Treatment of a System With Variable Mass

被引:1
作者
Bouchemla, N. [1 ]
Chetouani, L. [2 ]
机构
[1] Univ Akli Mohand Oulhadj, Dept Phys, Bouira, Algeria
[2] Univ Freres Mentouri, Lab LPMPS, Constantine, Algeria
关键词
Propagator; Path integral; Canonical transformation; HARMONIC-OSCILLATOR; DEPENDENT MASS; PARTICLE; TIME;
D O I
10.1007/s10773-018-3901-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The propagator related to a system described by an Hamiltonien having the symetric form is determined by using the path integral approach. As applications, two cases, where the mass and the potential are both dependent on time and position, are considered: a free particle with a variable massand a generalized oscillator.
引用
收藏
页码:3882 / 3901
页数:20
相关论文
共 14 条
[1]   On dissipative systems and related variational principles [J].
Bateman, H .
PHYSICAL REVIEW, 1931, 38 (04) :815-819
[2]  
Blasone M, 2004, ANN PHYS, V354, P312
[3]  
Bouchemla N, 2009, ACTA PHYS POL B, V40, P2711
[4]  
Caldirola P., 1941, Il Nuovo Cimento, VI8, P393, DOI [10.1007/BF02960144, DOI 10.1007/BF02960144]
[5]   GENERALIZED CANONICAL-TRANSFORMATIONS AND PATH-INTEGRALS [J].
CHETOUANI, L ;
GUECHI, L ;
HAMMANN, TF .
PHYSICAL REVIEW A, 1989, 40 (03) :1157-1164
[6]   CLASSICAL AND QUANTUM-MECHANICS OF THE DAMPED HARMONIC-OSCILLATOR [J].
DEKKER, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 80 (01) :1-112
[7]  
Feshbach H, 1977, Trans. N.Y. Acad. Sci., V38, P44
[8]  
Gradstein I.S., 1965, TABLES INTEGRALS SUM
[9]  
Grosche C., 1998, HDB FEYNMAN PATH INT, P241
[10]   EXACTLY SOLUBLE HARMONIC-OSCILLATOR FOR A PARTICULAR FORM OF TIME AND COORDINATES-DEPENDENT MASS [J].
JANNUSSIS, A ;
KARAYANNIS, G ;
PANAGOPOULOS, P ;
PAPATHEOU, V ;
SYMEONIDIS, M ;
VAVOUGIOS, D ;
SIAFARIKAS, P ;
ZISIS, V .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1984, 53 (03) :957-962