Discrete-time quantum walks on one-dimensional lattices

被引:15
作者
Xu, X. -P. [1 ]
机构
[1] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum Walk; Return Probability; Quantum Random Walk; Stationary Phase Approximation; Coin State;
D O I
10.1140/epjb/e2010-00267-2
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper, we study discrete-time quantum walks on one-dimensional lattices. We find that the coherent dynamics depends on the initial states and coin parameters. For infinite size of lattices, we derive an explicit expression for the return probability, which shows scaling behavior P(0, t) similar to t (-1) and does not depends on the initial states of the walk. In the long-time limit, the probability distribution shows various patterns, depending on the initial states, coin parameters and the lattice size. The time-averaged probability mixes to the limiting probability distribution in linear time, i.e., the mixing time M (epsilon) is a linear function of N (size of the lattices) for large values of thresholds I mu. Finally, we introduce another kind of quantum walk on infinite or even-numbered size of lattices, and show that by the method of mathematical induction, the walk is equivalent to the traditional quantum walk with symmetrical initial state and coin parameter.
引用
收藏
页码:479 / 488
页数:10
相关论文
共 40 条
[1]   Non-uniform mixing of quantum walk on cycles [J].
Adamczak, William ;
Andrew, Kevin ;
Bergen, Leon ;
Ethier, Dillon ;
Hernberg, Peter ;
Lin, Jennifer ;
Tamon, Christino .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2007, 5 (06) :781-793
[2]  
Aharonov D., 2001, P 33 ANN ACM S THEOR, DOI [10.1145/380752.380758, DOI 10.1145/380752.380758]
[3]   QUANTUM RANDOM-WALKS [J].
AHARONOV, Y ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1993, 48 (02) :1687-1690
[4]  
Ambainis A., 2001, P 33 ANN ACM S THEOR, P37, DOI 10.1145/380752.380757.
[5]  
[Anonymous], QUANTPH0010117
[6]  
[Anonymous], 1989, A Random Walk Through Fractal Dimensions, DOI 10.1002/9783527615995
[7]   One-dimensional quantum walks with absorbing boundaries [J].
Bach, E ;
Coppersmith, S ;
Goldschen, MP ;
Joynt, R ;
Watrous, J .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2004, 69 (04) :562-592
[8]   Examples of non-uniform limiting distributions for the quantum walk on even cycles [J].
Bednarska, M ;
Grudka, A ;
Kurzynski, P ;
Luczak, T ;
Wójcik, A .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (04) :453-459
[9]  
Bednarska M, 2003, PHYS LETT A, V317, P21, DOI 10.1016/j.physieta.2003.08.023
[10]   Quantum to classical transition for random walks [J].
Brun, TA ;
Carteret, HA ;
Ambainis, A .
PHYSICAL REVIEW LETTERS, 2003, 91 (13) :130602-130602