A Comparative Study of Heart Disease Prediction Using Classification Techniques

被引:0
|
作者
Alshakrani, Sara [1 ]
Hilal, Sawsan [2 ]
机构
[1] Univ Bahrain, Coll Sci, Big Data Sci & Analyt, Zallaq, Bahrain
[2] Univ Bahrain, Coll Sci, Dept Math, Zallaq, Bahrain
来源
2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA) | 2022年
关键词
Heart Disease (HD); Classification; LR; NB; DT; KNN; RF; SVM;
D O I
10.1109/DASA54658.2022.9765241
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In today's world, the most challenging thing for people is to sustain good health. One of the most significant impacts on people's health and lives is heart disease (HD). Heart failure is the number one cause of the greatest number of deaths worldwide. The goal of this paper is to evaluate classification techniques to see which one is the most accurate in predicting HD using R software. Statistical analysis helps in mining and examining the important factors of HD and can aid in determining whether or not a patient has a cardiac condition. In this paper, the potential of six classification techniques is used to predict heart failure. Namely, Logistic Regression (LR), Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbor (KNN), Random Forest (RF), and Support Vector Machine (SVM). According to the results of the analysis, KNN outperforms the other classification techniques in HD diagnosis.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [21] Automated prediction of Heart disease using optimized machine learning techniques
    Alqahtani, Lama A.
    Alotaibi, Hanadi M.
    Khan, Irfan Ullah
    Aslam, Nida
    2020 11TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2020, : 298 - 302
  • [22] Classification of Heart Failure Using Machine Learning: A Comparative Study
    Chulde-Fernandez, Bryan
    Enriquez-Ortega, Denisse
    Guevara, Cesar
    Navas, Paulo
    Tirado-Espin, Andres
    Vizcaino-Imacana, Paulina
    Villalba-Meneses, Fernando
    Cadena-Morejon, Carolina
    Almeida-Galarraga, Diego
    Acosta-Vargas, Patricia
    LIFE-BASEL, 2025, 15 (03):
  • [23] Comparative study of the classification models for prediction of bank telemarketing
    Zeinulla, Elzhan
    Bekbayeva, Katrina
    Yazici, Adnan
    2018 IEEE 12TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT), 2018, : 19 - 23
  • [24] Classification System for Prediction of Chronic Kidney Disease Using Data Mining Techniques
    Saha, Ishika
    Gourisaria, Mahendra Kumar
    Harshvardhan, G. M.
    ADVANCES IN DATA AND INFORMATION SCIENCES, 2022, 318 : 429 - 443
  • [25] A novel method for prediction of skin disease through supervised classification techniques
    Meena, K.
    Veni, N. N. Krishna
    Deepapriya, B. S.
    Vardhini, P. A. Harsha
    Kalyani, B. J. D.
    Sharmila, L.
    SOFT COMPUTING, 2022, 26 (19) : 10527 - 10533
  • [26] A Comparative Study for Depression Prediction Using Machine Learning Classification Models
    Pramanik, Rwittika
    Khare, Sandali
    Harshvardhan, G. M.
    Gourisaria, Mahendra Kumar
    ADVANCES IN DATA AND INFORMATION SCIENCES, 2022, 318 : 233 - 246
  • [27] An Empirical Comparative Analysis Using Machine Learning Techniques for Liver Disease Prediction
    Alghobiri, Mohammed
    Khan, Hikmat Ullah
    Mahmood, Ahsan
    INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS, 2021, 16 (04)
  • [28] A Comparison Analysis of Heart Disease Prediction Using Supervised Machine Learning Techniques
    Elhadjamor, Emna Ammar
    Harbaoui, Houda
    2024 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, ISCC 2024, 2024,
  • [29] A comparison of text classification methods using different stemming techniques
    Bounabi, Mariem
    El Moutaouakil, Karim
    Satori, Khalid
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2019, 60 (04) : 298 - 306
  • [30] Heart disease risk prediction using deep learning techniques with feature augmentation
    Teresa Garcia-Ordas, Maria
    Bayon-Gutierrez, Martin
    Benavides, Carmen
    Aveleira-Mata, Jose
    Alberto Benitez-Andrades, Jose
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (20) : 31759 - 31773